Классификация светопрозрачных фасадных конструкций. Фасадные конструкции остекления

Системные профили представляют собой бруски, которые могут иметь внутри пустоты или, как их еще называют, камеры. Термин «системные» связан с тем, что огромная номенклатура различных видов профилей и дополнительных элементов к ним представляет собой своеобразный конструктор, дающий возможность изготавливать окна, двери, крыши и фасадные конструкции.
Практически любые архитектурные решения могут быть выполнены благодаря многообразию элементов профильных систем, которые включают в себя накладные и самонесущие профили с различной конструктивной толщиной для обеспечения необходимой статической нагрузки.
Конструкции фасадных систем позволяют интегрировать в фасад окна и двери, а также решать узлы перехода к светопропускающим крышам. В системах ведущих производителей разработаны специальные элементы: продухи для скатных крыш, элементы нижнего и бокового крепления створок (поворотных и откидных) и т.д. Причем все эти элементы могут иметь одинаковую внешнюю ширину профилей и восприниматься на фасаде как единое целое. Важным является продуманность не только двухмерных, но и трехмерных узлов, их надежная герметизация, способность сочетаться со всей системой, в т.ч. с окнами и дверями.
При проектировании сложных фасадов крупных объектов и представительских зданий часто бывает недостаточно номенклатуры системных профилей, и ведущие фирмы разрабатывают специально под объект особые, индивидуальные профили.
Важно понимать, что для фасадов применяются специально разработанные для этих целей профильные системы. Оконные же профили могут использоваться в исключительных случаях, т. к. они обладают одним преимуществом. Оконные блоки могут быть изготовлены в качестве законченной конструкции на заводе, а при монтаже на фасаде они быстро устанавливаются один к другому, образуя целую оконную ленту. Получается так называемое ленточное остекление. В данном случае необходимо помнить только о том, что различные материалы нельзя бездумно комбинировать друг с другом. Если основные конструкции фасада выполнены из алюминия, то применять пластиковые окна нельзя, т.к. коэффициент температурного расширения у алюминия в два раза ниже, чем у пластика. Следовательно, при температурных колебаниях на улице должны быть обеспечены температурные зазоры в конструкции. В пластике же таких элементов, как правило, нет.
Светопрозрачные фасадные конструкции можно классифицировать по различным критериям.

Классификация по применяемым материалам

Для фасадных конструкций применяют различные виды стекол и стеклопакетов, которые удерживаются профилями, специально разработанными для выполнения данных задач. Для фасадных профилей применяются следующие материалы: алюминий, сталь и ПВХ.

Классификация по теплоизолирующей способности

Светопрозрачные фасадные системы можно разделить на:
1) «холодные» фасадные системы.
«Холодные» алюминиевые конструкции применяют там, где сохранения тепла не требуется;
2) «теплые» фасадные системы.
Отличительная особенность данных систем – наличие термомоста. Термомост – это профиль из полиуретана, полиамида, армированного полипропилена, вспененного полиэтилена. Он вставляется между двумя алюминиевыми профилями, которые составляют единую алюминиевую систему. Ширина термоизолирующей вставки колеблется от 18 до 100 мм в зависимости от изготовителя и класса теплосбережения, к которому принадлежит профиль;
3) «тепло-холодные» фасадные системы.
«Тепло-холодный» фасад используется тогда, когда необходимо реконструировать существующее здание, которое имеет в вертикальных стенах оконные проемы. При этом стеклянная стена навешивается поверх существующей ограждающей конструкции, и крепление фасада происходит не к перекрытиям, а к парапетным частям здания.
В этом случае применение «теплой» конструкции всего навесного фасада является избыточным. В области оконных проемов навесной фасад должен быть «теплым» (здесь он выполняет все функции стандартного окна), а в области «глухих» простенков – «холодным» (декоративная функция). Именно из-за этого четкого разделения областей фасад и назвали «тепло-холодным».
В теплых областях должна быть предусмотрена гидро- и пароизоляция оконных проемов. В «холодных» же областях остекление ведется не стеклопакетами, а стеклами. И за ними может образовываться конденсат, который должен испаряться. Поэтому «холодные» области необходимо обязательно проветривать. Между стеклом и стеной здания оставляется некоторый зазор, и в этом промежутке образуется каминный эффект –вытяжка. И вся влага, которая образовалась в результате сезонных или дневных температурных колебаний, вытягивается вверх. Это является особенностью системы, можно сказать, ее краеугольным камнем.

Классификация по способу крепления заполнения конструкции

В зависимости от вида крепления выделяют:
1) классические (опорно-ригельная или стоечно-ригельная) фасадные конструкции.
Опорно-ригельную или стоечно-ригельную фасадная система с большим спектром декоративных крышек получила наибольшее распространение, как наиболее универсальная и простая система. Состоит из вертикальных и горизонтальных элементов, образующих каркас фасада. Стеклопакеты устанавливаются снаружи и фиксируются прижимной планкой. После этого прижимные планки закрываются декоративными крышками с видимой шириной 50–80 мм.
Такой фасад имеет вид стеклянной поверхности, разделенной четкими горизонтальными и вертикальными линиями декоративных крышек;
2) фасадные конструкции с полуструктурным остеклением.
Промежуточное решение между классической и структурной системами. Является разновидностью стоечно-ригельной системы. В ней не используются структурный герметик и специальные стеклопакеты;
3) фасадные конструкции со структурным остеклением.
Конструктив каркаса такой же, как и у предыдущих систем, отличие заключается только в способе крепления стеклопакетов.
Для структурной системы характерно полное отсутствие видимых снаружи алюминиевых элементов. Благодаря этому достигается эффект сплошной стеклянной стены, придающий зданию неповторимый современный вид. В данном виде остекления используются специальный силикон, который выполняет несущие функции, и специальные стеклопакеты для структурного остекления. Под структурным остеклением иногда ошибочно подразумевают точечное (планарное), хотя принцип конструкции у этих фасадов разный.
В связи с этим можно выделить два основных типа крепления стеклопакетов к несущим конструкциям фасада, каковыми являются металлические профили или фермы, натянутые ванты, а в некоторых случаях и деревянные брусья.
1-й тип крепления – «профильный», применяется в основном для плоских стен и предусматривает закрепление по всему контуру стеклопакета.
2-й тип крепления – «точечный», предусматривает крепление стеклопакетов только по углам с помощью специальных приспособлений – «пауков», или «спайдеров» (от английского spider – паук). В данном случае речь идет о планарном остеклении. Точечный тип крепления позволяет обеспечить в максимальной степени облегченную конструкцию стеклянной стены, в некоторых случаях визуально, на грани представлений о гравитации. Форма и размеры стальных «пауков» каждый раз проектируются в зависимости от разрезки стены на отдельные модули и характера изгибов фасадной структуры. Многогранные структуры вызывают потребность в проектировании многолапых «пауков», а на краях стеклянной поверхности появляются «пауки» с уменьшенным количеством лап – 3, 2 и даже 1.
На основе вышеприведенной идеологии можно создавать как вертикальные, так и наклонные ограждающие поверхности, а также купола.

По способу крепления к основным конструктивным элементам здания

Существует несколько принципов крепления конструкции фасада здания. Один из них – это навесная самонесущая система. Вся фасадная конструкция навешивается перед стеной или каркасом здания снаружи и крепится вертикальными стойками только на плитах перекрытия. А горизонтальные ригели являются элементами, которые только передают вес стеклопакета. Эта система достаточно проста в работе, но требует наружного монтажа. А так как установка стеклопакетов ведется снаружи, то необходимо либо наличие лесов, либо навесных монтажных приспособлений в виде люлек.
Существуют системы, когда фасад встраивается в здание. Конструкция устанавливается от пола одного этажа до плиты перекрытия следующего. Но при этом торцы перекрытий остаются незащищенными, необходимо их декорировать и теплоизолировать, т.к. они являются проводниками холода вовнутрь здания.
Когда необходимо перекрывать большие пролеты, то часто экономически нецелесообразно увеличивать жесткость конструкции путем усиления жесткости алюминиевых конструкций, а проще сзади поставить дешевый стальной каркас, на который закрепить алюминиевые конструкции. Размеры пролетов, для которых могут быть применены алюминиевые системы, определяются расчетом. При выборе конструкции необходимо помнить также о пожаробезопасности.

Классификация в зависимости от соединения стоек и ригелей

Соединение стоек и ригелей в различных конструкциях может осуществляться по-разному. В вертикально расположенной навесной стене соединение может осуществляться внахлест, когда профили частично перекрывают друг друга. Ригель прикрепляется к стойке с использованием экструдированного алюминиевого соединителя, закрепленного в ригеле с помощью прижимных винтов.
Соединитель затем крепится к вертикальному несущему профилю винтами. Такой метод соединения обеспечивает высокий уровень регулирования ригеля даже на строительной площадке. Место соединения ригеля и несущего профиля герметизируется прокладкой из морозостойкой резины (ЕPDM).
Соединение несущих профилей и ригеля наклонно расположенной навесной стены может осуществляться при небольшом наклоне ригеля к несущему профилю. Такой способ позволяет осуществлять дренаж из ригеля в несущий профиль, исключая нарушение вертикальной дренажной камеры в несущем профиле. В канале резиновой прокладки вертикального профиля располагают уплотнитель из EPDM, который герметизирует стык вертикального профиля и ригеля без необходимости применения силикона. Вставленные ригели крепятся к несущему профилю винтами из нержавеющей стали. Возникающая при обеспечении наклона ригеля разница в уровнях прокладочных каналов компенсируется применением различных по своим размерам уплотнительных резинок в несущем профиле и в перекладине. Соединение между вертикальным и горизонтальным профилями может осуществляться также путем частичного углубления ригеля в вырезы в вертикальном профиле.

Монтаж конструкций

Монтаж фасадных светопрозрачных конструкций может осуществляться тремя способами (см. рис. 1.):
- монтаж отдельных штанг (традиционная технология монтажа);
- лестничный монтаж;
- элементный монтаж.

Традиционная технология монтажа фасада

Традиционная технология монтажа фасада на объекте – монтаж отдельных штанг.
В данном случае сборка стен из стекла и алюминия осуществляется на объекте. В данном случае светопрозрачные фасады зданий возводятся в следующем порядке:
- алюминиевый профиль (стойки – вертикальный, и ригеля – горизонтальный профиль) и стеклопакеты поставляются на строительную площадку;
- стойки и ригели соединяют;
- затем снаружи на алюминиевые опорные пластины, которые предварительно закрепляются к ригелю, устанавливаются стеклопакеты (или непрозрачные декоративные панели). Стеклопакеты крепятся специальными алюминиевыми прижимными планками, которые могут сверху закрываться декоративными накладками.

Лестничный монтаж

В данном случае сборка стоек и ригелей частично осуществляется на заводе. На строительный объект привозят отдельные элементы соединенных стоек и ригелей и дополнительные необходимые для монтажа ригели. Стеклопакеты также устанавливают непосредственно на стройплощадке.

Модульный способ возведения фасадов

Отличие элементных (модульные, блочные) фасадов заключается в том, что на стройплощадку привозят уже готовые блоки определенных размеров. Блочные фасадные системы позволяют полностью собирать большие панели и застекленные элементы (включая встраивание таких элементов, как неподвижные оконные рамы, вентиляционные системы и специальные подоконные стеновые панели) на заводе и легко монтировать их на объекте. В этом случае элементные фасады возводятся в следующем порядке:
- из алюминиевого профиля и стеклопакетов (стекла, «глухого» заполнения) на заводе собираются блоки;
- произведенные блоки упаковывают и перевозят на объект, где они «навешиваются» на перекрытия зданий.
Элемент-фасад – это полностью готовая к монтажу фасадная конструкция, состоящая из «глухого» фасада либо из «глухого» фасада и уже установленной в нем оконной системы.
Габариты элементов определяются архитектурно-планировочными решениями и удобством их изготовления, транспортировки и монтажа. Они изготавливаются и остекляются в цехе, упаковываются, грузятся в металлические контейнеры открытого типа и доставляются на объект. Монтаж ведется квалифицированной бригадой из 6–8 человек с помощью подъемника или крана. Наружные леса и подмости не используются – при установке и закреплении модулей 3–4 монтажника находятся с внутренней стороны здания.
Элементное строительство не имеет альтернативы с точки зрения скорости и качества возведения фасадной оболочки. Его преимущества:
- стандартизация элементов на этапе проектирования, высокое качество сборки, четкий контроль в процессе изготовления, выходной контроль качества;
- монтаж на стройке с меньшим количеством рабочих операций, что значительно снижает влияние человеческого фактора (появление брака);
- сроки строительства практически не зависят от погодных условий, так как конструкции изготавливаются в производственном цехе;
- используется поэтажный способ монтажа, следовательно, при «закрытом контуре» возможно проведение отделочных работ на более ранней стадии;
- более ранняя готовность к заселению и началу эксплуатации, быстрый возврат инвестированных средств.
Процесс изготовления фасадов для остекления высотных объектов существенно отличается от производства традиционных стоечно-ригельных фасадов. Производитель несет более высокие затраты по обеспечению бесперебойного снабжения объекта, производственной и транспортной логистики, поскольку элементы должны изготавливаться и поставляться на стройплощадку в заданной последовательности и точно в срок.
Следует понимать, что это не только инвестиции в основные средства и персонал предприятия, это единственно возможный способ обеспечить поставку необходимого количества элементов (качественных!) на объект. Слаженная бригада монтажников способна монтировать от 40 до 60 элементов фасада (250–400 кв. м) в день, следовательно, такое же количество должен ежедневно отгружать цех.

Фасадные конструкции (витражи) из системных профилей и стекла классифицируют по различным признакам:

1) по применяемым материалам. Используются различные виды стекол и стеклопакетов, которые закрепляются в профилях, специально разработанных для фасадных систем. Применяются профили из алюминия, стали, ПВХ;

2) по теплоизолирующей способности. Фасадные конструкции остекления могут быть «теплыми», «холодными» и «тепло-холодными». Холодные системы для отапливаемых зданий не применяются;

3) по способу крепления стеклопакетов. Остекленные конструкции фасадов могут быть с видимыми элементами крепления стеклопакетов, как вертикальными, так и горизонтальными (стоечно-ригельный вариант), и со скрытыми элементами крепления (условно – вариант структурного остекления). Применяется и промежуточный вариант, когда на фасадной стороне присутствуют только вертикальные или только горизонтальные профили;

4) по способу крепления к несущим конструкци ям здания фасадные системы остекления делятся на навесные (преимущественное применение) и самонесущие.

Во все «светопропускающие фасады» могут быть встроены окна и двери. Кроме стеклопакетов и стекол могут устанавливаться глухие (несветопрозрачные) утепленные панели. Их можно комбинировать со стеклопакетами, обеспечивая требуемую освещенность помещений и архитектурную выразительность фасадов.

Проектирование конструкций фасадного остекления требует не только решения вопросов, связанных с естественным освещением помещений и созданием выразительных фасадов, но и ряда технических задач. К ним относятся:

Решение вопросов статики всей конструкции в целом и особенно в местах крепления к несущим конструкциям здания;

Обеспечение компенсации температурных деформаций конструкций;

Конструктивные решения узлов примыканий светопропускающей конструкции к остову здания;

Выбор стекол и самой конструкции стеклопакетов;

Обеспечение вентиляции помещений;

Решение вопросов применения автоматических систем пожаротушения;

Обеспечение (при необходимости) системы солнцезащиты;

Обеспечение отвода влаги с любой высоты и площади остекления (система дренажа);

Эксплуатация светопропускающей конструкции (замена заполнений, мытье и т.п.).

При грамотном решении указанных проблем (при проектировании и качественном строительстве) «теплая» светопропускающая конструкция должна обеспечивать свою прочность, гидроизоляцию, пароизоляцию, теплоизоляцию (зимой и летом), звукоизоляцию, вентиляцию конструкции и дренаж конденсата, а также противопо­жарную защиту.

Важно понимать, что для навесных витражей должны применяться специально разработанные профильные системы. Самые разные архитектурные решения могут быть выполнены благодаря многообразию элементов профильных систем, которые включают в себя накладные и самонесущие профили с различной конструктивной толщиной (высотой сечения) для обеспечения работы под нагрузкой.

Фасадные конструкции позволяют интегрировать в свою структуру окна и двери (из подобных профилей), решать узлы перехода к светопропускающим кровлям. В системах ведущих производителей разработаны специальные элементы: продухи для остекленных скатов, элементы бокового и нижнего крепления створок (поворотных и откидных) и т.д. Все эти элементы могут иметь одинаковую ширину наружных профилей и восприниматься на фасаде как единое целое.

Необходимо понимать и то, что различные материалы (профили) нельзя слепо комбинировать друг с другом. Например, если основные конструкции выполнены из алюминия, то встраивать в них пластиковые окна (из ПВХ) нельзя, так как коэффициент температурного расширения у алюминия в два раза ниже, чем у пластика.

Для конструкций фасадного остекления используются, в основном, алюминиевые профили, но в последнее время популярность приобретают профили из стали. Могут применяться также армированные ПВХ-профили и комбинированные профили (стальалюминий).

Основными преимуществами стальных конструкций по сравнению с алюминиевыми аналогами являются лучшие характеристики по огнестойкости и безопасности, а также прочностные свойства, позволяющие реализовывать проекты без применения усиливающих элементов и выполнять большие пролеты в фасадной сетке. При одних и тех же размерах стеклопакетов габариты стоек и ригелей в сталь­ных сериях значительно меньше, чем в алюминиевых. Это улучшает эстетические характеристики светопропускающих конструкций как снаружи, так и изнутри.

Стоечно-ригельные конструкции фасадного остекления (рис. 26.48) свое название получили благодаря тому, что основными конструктивными элементами в этой системе являются вертикальные несущие стойки, к которым крепятся горизонтальные ригели. Несущая часть такой конструкции располагается с внутренней стороны навесной стены-витража.

Рис. 26.48. Здание с витражом-стеной стоечно-ригельной конструкции

Соединение стоек и ригелей в различных конструкциях осуществляется поразному. В вертикальной навесной стене соединение может выполняться «внахлест», когда профили частично перекрывают друг друга. Ригель прикрепляется к стойке с использованием алюминиевого соединителя (кронштейна), закрепленного в стойке с помощью прижимных винтов (рис. 26.49). Место соединения ригеля и несущего профиля герметизируется прокладкой из морозостойкой резины или силиконовым герметиком.






Рис. 26.49. Соединение стойки и ригеля из алюминиевых профилей: а – перпендикулярное; б – под углом; 1 – стойка; 2 – ригель; 3 – кронштейн; 4 – уплотнитель из резины; 5 – винт; 6 – силиконовый герметик

Соединение стоек и ригелей наклонно расположенной навесной стены может осуществляться при небольшом наклоне ригеля к стойке. Такой способ позволяет осуществлять дренаж из ригеля в несущий профиль.

Соединение между вертикальными и горизонтальными профилями может осуществляться также путем частичного углубления ригеля в вырезы вертикального профиля.

Стеклопакеты устанавливаются снаружи на алюминиевые опорные пластины, которые предварительно закрепляются к ригелю. В процессе монтажа стеклопакеты фиксируются по месту с помощью синтетических скоб, привинченных к несущим профилям. Уплотнители из резины обеспечивают герметизацию стыков между стеклом и алюминиевыми профилями. Прижимные планки стеклопакетов крепятся болтами из нержавеющей стали, и затем на прижимные планки защелкиваются декоративные алюминиевые крышки.

Обязательным требованием ко всем профильным системам является вывод конденсата. Это самый серьезный вопрос, на который необходимо обращать особое внимание при фасадном остеклении, так как стеклопакет одной своей поверхностью выходит наружу, а другой – в теплое помещение. Это значит, что у него обязательно есть зона, температура которой близка к температуре точки росы. В этой зоне образуются капельки воды, которые нужно вывести из конструкции, при этом ограждение должно оставаться герметичным и с наружной стороны (защита от внешних воздействий), и со стороны помещения (во избежание теплопотерь).

Существуют несколько способов вывода конденсата. Один из них – когда около каждого стеклопакета в нижней части делаются два или больше дренажных отверстий, через которые конденсат выводится из-под стеклопакета. Вода стекает по горизонтальным элементам к узлу крепления со стойкой, попадает в нее, уходит вниз и в самой нижней части выводится наружу.

Другим важным моментом правильного функционирования стеклопакета является вентиляция пространства вокруг него. Удаление влаги через дренажные каналы недостаточного размера, а также плохая вентиляция стеклопакетов могут привести к образованию плесени и росту грибков. При этом разъедается торец стеклопакета, покрытый герметиком, и нарушается герметичность, что приводит к образованию конденсата внутри стеклопакета и отпотеванию наружного стекла.

В системах из алюминиевых профилей должна быть решена проблема компенсации теплового расшире ния конструкций (особенно при значительных размерах). Горизонтальное расширение элементов навесной стены может компенсироваться путем крепления ригеля к вертикальному профилю через продолговатые горизонтальные отверстия и применением в стыках резиновых прокладок. Вертикальное расширение в местах соединения вертикальных профилей может компенсироваться с помощью расширительного профиля (выполняющего и функцию усиления конструкции). Такой профиль помещается во внутренние полости двух вертикально соединяемых стоек.

Существуют несколько принципов крепления конст рукций остекления зданий. Один из них – навесная си стема, когда вся фасадная конструкция навешивается снаружи и крепится с помощью кронштейнов только к плитам перекрытия (рис. 26.50). Горизонтальные ригели являются элементами, которые только передают вес стеклопакетов на стойки. Эта система достаточно проста в устройстве, но требует наружного монтажа, а значит, наличия лесов либо навесных монтажных приспособлений.


Рис. 26.50. Узлы крепления стоек навесных витражей: а – с помощью кронштейна-детали; б – со сборным кронштейном; 1 – кронштейн; 2 – втулка; 3 – накладка; 4 – болт с гайкой и шайбой; 5 – стойка

Самонесущая на высоту этажа конструкция встраивается в здание. Она устанавливается на перекрытия, при этом торцы перекрытий, которые необходимо теплоизолировать и декорировать, остаются открытыми.

При необходимости применения витражей с большими пролетами (в зданиях с высокими этажами) бывает экономически нецелесообразно увеличивать жесткость конструкции путем увеличения сечения алюминиевых профилей. Проще изнутри поставить дешевый стальной каркас, на который закрепить алюминиевые конструкции. Размеры пролетов, для которых могут быть применены алюминиевые системы, определяются расчетом.

При выборе конструкции необходимо уделять внимание пожаробезопасности. Некоторые фирмы разработали специальные алюминиевые огнестойкие конструк ции, которые могут применяться не только для фасадного остекления, но и в светопропускающих крышах. Увеличение огнестойкости обеспечивается минераловатными вкладышами и многослойными стеклами.

На рис. 26.51 показаны основные узлы конструкции навесного витража многоэтажного здания из алюминиевых профилей серии «RF 50». Серия предназначена для изготовления стеновых ограждений зданий, а также для изготовления наклонных светопропускающих покрытий, фонарей, зимних садов и других конструкций. В состав несущей системы входят стойки и ригели с видимой шириной 50 мм, которые соединяются между собой наложением ригеля на стойку без выборки паза в стойке. В зависимости от объекта и воздействующих на конструкцию нагрузок имеется возможность выбора несущих элементов с моментами инерции от 40 до 860 см 4 . При особо высоких нагрузках стойки можно усиливать специальными, вставляемыми внутрь стоек, профилями. Набор ригельных профилей позволяет, при необходимости, устанавливать ригель одинакового со стойкой размера – это удобно при монтаже в местах примыкания ограждающей конструкции к перекрытиям здания.

























Рис. 26.51 Узлы навесных витражей из алюминиевых профилей серии «RF50»: а-з – горизонтальные сечения (стоек); и-о – вертикальные сечения (ригелей)

В серии имеется набор монтажных стоек, которые позволяют монтировать ограждающую конструкцию из предварительно собранных элементов (рис. 26.51 а), что значительно сокращает время монтажа. Использование монтажных стоек позволяет также компенсировать горизонтальные изменения размеров элементов конструкции под воздействием колебаний температуры. Вертикальные изменения размеров компенсируются взаимным (телескопическим) соединением двух стоек при помощи закладного профиля.

Для получения необходимых теплофизических и звукоизоляционных свойств ограждающей конструкции в серии «RF50» используется набор термовставок (термоизоляторов) из твердого ударопрочного поливинилхлорида (ПВХ) и набор уплотнительных прокладок из EPDM. Многокамерные термоизоляторы вставляются снаружи по всей длине стоек и ригелей.

Прозрачные части конструкции остекляются снаружи стеклом или стеклопакетами. В непрозрачные части могут устанавливаться различного рода слоистые панели (например, из набора – два окрашенных алюминиевых листа, между которыми располагается минераловатная плита, или другой вариант – наружное закаленное стекло, затем минераловатная плита и алюминиевый лист изнутри). Серия «RF 50» позволяет устанавливать заполнение толщиной от 4 до 50 мм, при этом возможны любые комбинации толщины (в указанном диапазоне) устанавливаемого заполнения.

В конструкции предусмотрена возможность удаления влаги и вентиляция области фальца стеклопакета.

В серии используется набор накладных декоративных крышек, которые могут иметь различный цвет. При этом конструкции могут быть двухцветными – внутренние элементы (стойки и ригели) окрашены в один цвет, а наружные элементы (крышки) – в другой.

В конструкцию фасадного остекления могут устанавливаться окна и двери любого типа открывания.

Соединительные и крепежные изделия (самонарезающие винты, болты, гайки и т.п.) изготовлены из нержавеющей стали (если есть контакт с алюминием) либо имеют антикоррозионное покрытие.

Фасадное структурное остекление (рис. 26.52) представляет собой единую поверхность стекла без видимых наружных накладных планок с минимальными зазорами между стеклами. Зазоры необходимы для того, чтобы компенсировать температурные колебания размеров соседних стеклопакетов. Несущий остов самого здания должен быть абсолютно жестким, а плиты перекрытий иметь минимальный прогиб, практически равный нулю.




Рис. 26.52. Здание со структурным остеклением (SCHUCO): а – общий вид; б – горизонтальное сечение; в – вертикальное сечение

В ряде технических решений предусматривается приклеивание стеклопакета к алюминиевой опорной рамке, которая затем закрепляется на вертикальные стойки и горизонтальные ригели. Для структурного остекления часто применяют особый стеклопакет, в котором наружное стекло делается длиннее, чем внутреннее. Это позволяет приклеивать к опорной рамке одновременно два стекла – наружное и внутреннее, что обеспечивает всей конструкции большую надежность.

Для увеличения безопасности и надежности системы остекления, помимо простого приклеивания стеклопакетов, существует еще и механическая фиксация путем продления опорной рамки и загибания ее за край стекла наружу. Алюминиевая рамка становится видна с фасада, но зато существенным образом повышается безопасность всей конструкции. Это особенно важно в случае пожара, так как термостойкость клея менее 200°С, и только механическое крепление позволяет стеклопакету удерживаться.

В российских условиях используется технология крепления стеклопакетов на механических фиксаторах, при которой опирание и фиксация происходят за счет поворотных скоб-«пропеллеров», имеющих по два прижимных уса (рис. 26.53). Используются специальные стеклопакеты, в которых рамка с абсорбентом расположена не у края, а заглублена приблизительно на 50 мм. Таким образом по всему периметру стеклопакета формируется паз. При монтаже «усы» ориентированы параллельно швам, свободно заглубляются в них на половину толщины стеклопакета и притягиваются саморезами. Швы по всему периметру заполняются силиконовыми уплотнителями, которые обеспечивают герметичность, компенсируют деформации вследствие термического расширения стекла относительно несущей структуры и возможные неточности монтажа.


Рис. 26.53. Крепление стеклопакетов структурного остекления зданий на механических фиксаторах (Россия)

Применяется также промежуточный вариант, когда только вертикальные или только горизонтальные накладки располагаются на наружной плоскости остекления. Стеклопакеты при этом варианте крепятся в одном направлении традиционным способом (стоечно-ригельная конструкция), а в перпендикулярном направлении швы между соседними стеклопакетами герметизируются специальными резиновыми прокладками. Это накладывает ограничение на размеры применяемых стеклопакетов. При такой конструкции стены-витража возможна установка открывающихся элементов со стыками, не видимыми с фасада.

В зданиях сравнительно небольшой высоты (в том числе этажей) возможно фасадное остекление с применением ПВХ-профилей по самонесущей или навесной схемам (рис. 26.54). В этом случае промежуточные ригели и горизонтальные элементы, примыкающие к перекрытиям, решаются аналогично оконным системам с использованием различных уширительных профилей. Вертикальные стойки должны в каждом конкретном случае рассчитываться на прочность. Как правило, они выполняются с применением соединительных усиленных ПВХ-профилей либо стальных профилей (см. рис. 26.46).





2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2011 г. N 1563-ст
4 В настоящем стандарте учтены основные нормативные положения следующих международного и европейского стандартов*:

ИСО 15099 "Теплотехнические свойства окон, дверей и солнцезащитных устройств. Процедуры подробного расчета" (ISO 15099 "Thermal performance of windows, doors and shading devices - Detailed calculations, NEQ")
- EH ИСО 13947:2006 "Теплотехнические характеристики фасадных конструкций. Расчет теплопропускания " (EN ISO 13947:2006 "Thermal performance of curtain walling - Calculation of thermal transmittance, NEQ")
5 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Настоящий стандарт распространяется на светопрозрачные фасадные конструкции, а также на различные типы оконных и дверных блоков и устанавливает процедуры расчета их теплотехнических характеристик.
Установленные настоящим стандартом процедуры расчета теплотехнических характеристик предназначены для использования с помощью компьютерных программ на стадии проектирования строительных объектов, сопоставления различных вариантов конструкций и при анализе энергопотребления здания.
Отдельные разделы настоящего стандарта могут быть использованы для оценки применения различных ограждающих фасадных конструкций в зданиях.
Настоящий стандарт не предназначен для расчета теплотехнических характеристик светопрозрачных конструкций с целью их сертификации.

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ 26602.1-99 Блоки оконные и дверные. Методы определения сопротивления теплопередаче
ГОСТ 30494-96 Здания жилые и общественные. Параметры микроклимата в помещениях
ГОСТ 30971-2002 Швы монтажные узлов примыканий оконных блоков к стеновым проемам. Общие технические условия
ГОСТ 22233-2001 Профили прессованные из алюминиевых сплавов для светопрозрачных ограждающих конструкций. Технические условия
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 светопрозрачная ограждающая конструкция: Ограждающая конструкция, предназначенная для освещения естественным светом помещений зданий.
3.2 расчетные зоны светопрозрачной ограждающей конструкции: Участки конструкции (коробка, рама, створка, разделительные элементы: импосты, горбыльки, бруски переплета, центральные и краевые зоны остекления), являющиеся или принимаемые за однородные температурные зоны.3.3 типоразмерный ряд: Ряд ограждающих конструкций, характеризующихся единым конструктивным решением и отличающихся габаритными размерами, архитектурным рисунком, а также относительной площадью и вариантами остекления.
3.4 навесной фасад: Конструкция, состоящая из вертикальных и горизонтальных профилей, заполнения или деталей, соединенных между собой и закрепленных на каркасе здания при помощи кронштейнов. Конструкция образует наружную оболочку здания, которая самостоятельно или в сочетании с каркасом здания выполняет функции наружной стены, но не участвует в восприятии нагрузок каркаса здания.
3.5 стоечно-ригельный фасад: Навесная фасадная конструкция, включающая стойки, ригели, кронштейны, анкерные крепления, прозрачные (непрозрачные) заполнения, другие элементы, изготовленные заранее и собираемые непосредственно на фасаде здания.
3.6 модульный (элементный фасад): Навесной фасад, состоящий из предварительно изготовленных, включая заполнение, модулей (элементов) высотой в один или несколько этажей и соединенных между собой.
3.7 двойной (двухслойный) фасад: Система, состоящая из наружного и внутреннего слоев остекления и

воздушной прослойки. Наружный и внутренний слои остекления могут иметь в своем составе как стекла, так и стеклопакеты. Оба слоя остекления могут быть снабжены открывающимися элементами. Одной из функций воздушной прослойки является расположение в ней систем солнцезащиты - поворачивающихся ламелей. Глубина воздушной прослойки и тип вентиляции в ней определяются исходя из климатических характеристик региона строительства, требуемых теплотехнических характеристик наружного ограждения и общих принципов проектирования здания, включая его инженерные системы.

3.8 фасад с рамным остеклением: Навесной фасад, состоящий из горизонтальных и вертикальных элементов, соединенных между собой в рамы, закрепленных на каркасе здания и оснащенных заполнениями. Фасад с рамным остеклением имеет визуальную разбивку по вертикали и горизонтали.
3.9 фасад со структурным остеклением: Конструкция навесного фасада, в которой профили не выступают за наружную плоскость заполнений, а вертикальные и горизонтальные швы герметизируются наружными герметиками и/или уплотнительными прокладками. Фиксация заполнений осуществляется путем их вклеивания на внутреннюю поверхность несущей конструкции при минимальном или отсутствующем механическом креплении.

3.10 фасад с полуструктурным остеклением: Разновидность фасада со структурным остеклением с видимыми рамными элементами крепления с наружной стороны в одном из направлений - вертикальном или горизонтальном.

3.11 теплый фасад: Тип конструкции навесного фасада с накладной или закатанной в профиль термоизоляционной вставкой, обеспечивающий защиту внутренних помещений от внешних воздействий отрицательной температуры, шума, воздуха и атмосферных осадков.

3.12 глухое остекление: Часть фасадной конструкции, жестко закрепленная в рамной коробке, не имеющая механизма открывания.
3.13 открывающийся элемент: Рамная конструкция, в т.ч. оконный или дверной блок, обеспечивающая

функцию открывания в навесной фасадной конструкции здания.
3.14 светопрозрачное заполнение: Заполнение из прозрачного листового материала (стекла) и/ или стеклопакета.
3.15 непрозрачное заполнение: Заполнение из стекла, стеклопакета, листового облицовочного материала, однослойной или многослойной панели, изготовленной из непрозрачных материалов.
3.16 стойка: Вертикальный несущий элемент для крепления заполнений, который, как правило, воспринимает нагрузки от всей навесной фасадной конструкции и передает их через кронштейны на несущее основание.

3.17 ригель: Горизонтальный несущий элемент для крепления заполнения навесного фасада. Ригель может быть верхний, нижний и центральный.
3.18 кронштейн: Крепежное приспособление, рассчитанное для передачи на несущее основание всех действующих на навесной фасад нагрузок.
3.19 модуль (элемент): Отдельно собранный готовый рамный элемент с заполнением. Поле модуля может иметь светопрозрачное или непрозрачное заполнение; конструктивно и визуально разделено шпроссами, ригелями и стойками на более мелкие поля заполнения.

Теплотехнические характеристики всей светопрозрачной конструкции рассчитывают путем объединения свойств всех компонентов системы, используя соответствующие площади проекций этих компонентов либо периметр прозрачной зоны конструкции. Свойства всей конструкции определяют на основе общей площади проекции всей конструкции. Площади проекций компонентов и периметр прозрачной зоны показаны на рисунке 1а.
Рисунок 1а - Схема, показывающая площади проекций и периметр прозрачной зоны

где - коэффициент теплопередачи светопозрачной ограждающей конструкции;
- площадь проекции светопозрачной ограждающей конструкции;
, - площади проекций светопрозрачной и непрозрачной зон конструкции соответственно;
, - сопротивления теплопередаче центральной части светопрозрачной и непрозрачной зон конструкции соответственно;
- коэффициент линейной теплопередачи, который учитывает взаимодействие между рамой и остеклением или взаимодействие между рамой и непрозрачной панелью;
- длина периметра светопрозрачной зоны.
Знак суммирования , включенный в уравнение (1), используется для подсчета вкладов различных частей одного типа компонента. Например, несколько значений должны быть использованы для сложения вкладов различных значений.
Альтернативный метод использования краевых зон также применим для вычисления сопротивления теплопередаче конструкции . При использовании этого метода нет необходимости определять линейный коэффициент теплопередачи . Вместо этого зону остекления разделяют на центральную зону остекления , краевую зону остекления и сопротивление теплопередаче , которые используют для выражения теплопередачи через краевую зону остекления. Если в остеклении присутствуют разделительные элементы, то зону разделителя и сопротивление теплопередаче разделителя вычисляют так же, как и соответствующую краевую зону остекления, примыкающую к разделителю, и сопротивление теплопередаче краевой зоны разделителя . В качестве разделителя могут выступать стойки и ригели фасадной конструкции.
Общее сопротивление теплопередаче светопрозрачной ограждающей (фасадной конструкции) определяют по выражению (2):



409 × 76 пикс.  
, (2)

где и - площади проекции зоны непрозрачной части (рамы) и края остекления соответственно, м ;
и - длины проекции зоны непрозрачной части (рамы) и края остекления, выбираемые в диапазоне 63,5 - 100 мм соответственно (все размеры измеряют с внутренней стороны).
Величины и тепловых потоков через зоны непрозрачной части (рамы) и краевой зоны остекления (внутренние поверхности) соответственно в (3.1) и (4.1), включая эффект остекления и дистанционной рамки, выражают в Вт/м.
Расчеты должны быть проведены для каждой комбинации непрозрачной части (рамы) и остеклений с различными дистанционными рамками.
Суммирование, включенное в выражение (2), используется для подсчета различных частей одного и того же типа компонента. Например, несколько частей должны быть использованы, чтобы сложить вклады различных значений , соответствующих нижней, верхней и боковым частям рамы.
Величина может соответствовать подоконнику, верхней и боковым частям непрозрачных элементов конструкции и разделителям. Показанная на рисунке 1б ширина краевых зон остекления, примыкающих к раме и разделителю, равна 63,5 мм (2,5 дюйма). Сумма площадей всех компонентов равна площади проекции всей светопрозрачной конструкции.
Рисунок 1в - Площади центральной зоны остекления, края остекления, разделителя, края остекления у разделителя и рамы для типичной светопрозрачной конструкции

В системах ведущих производителей разработаны специальные элементы: продухи для скатных крыш, элементы нижнего и бокового крепления створок (поворотных и откидных), и т.д. Причем, все эти элементы могут иметь одинаковую внешнюю ширину профилей и восприниматься на фасаде как единое целое. Важным является продуманность не только двухмерных, но и трехмерных узлов, их надежная герметизация, способность сочетаться со всей системой, в т.ч. с окнами и дверями.

При проектировании сложных фасадов крупных объектов и представительских зданий часто бывает недостаточно номенклатуры системных профилей, и ведущие фирмы разрабатывают специально под объект особые, индивидуальные профили.

Важно понимать, что для фасадов применяются специально разработанные для этих целей профильные системы. Оконные же профили могут использоваться в исключительных случаях, т. к. они обладают одним преимуществом. Оконные блоки могут быть изготовлены в качестве законченной конструкции на заводе, а при монтаже на фасаде они быстро устанавливаются один к другому, образуя целую оконную ленту. Получается так называемое ленточное остекление. В данном случае необходимо помнить только о том, что различные материалы нельзя бездумно комбинировать друг с другом. Если основные конструкции фасада выполнены из алюминия, то применять пластиковые окна нельзя, т.к. коэффициент температурного расширения у алюминия в два раза ниже, чем у пластика. Следовательно, при температурных колебаниях на улице должны быть обеспечены температурные зазоры в конструкции. В пластике же таких элементов, как правило, нет.

Светопрозрачные фасадные конструкции можно классифицировать по различным критериям:

1. По применяемым материалам

Для фасадных конструкций применяют различные виды стекол и стеклопакетов, которые удерживаются профилями, специально разработанных для выполнения данных задач. Для фасадных профилей применяются следующие материалы: алюминий, сталь и ПВХ.

2. По теплоизолирующей способности

Светопрозрачные фасадные системы можно разделить на:

1) Холодные фасадные системы

«Холодные» алюминиевые конструкции применяют там, где сохранения тепла не требуется.

2) Теплые фасадные системы

Отличительная особенность данных систем: наличие термомоста.

Термомост - это профиль из полиуретана, полиамида, армированного полипропилена вспененного полиэтилена. Он вставляется между двумя алюминиевыми профилями, которые составляют единую алюминиевую систему. Ширина термоизолирующей вставки колеблется от 18 до 100 мм, в зависимости от изготовителя и класса теплосбережения, к которому принадлежит профиль.

Рисунок 1.1

Термомост в фасадных алюминиевых системах

В нашем восприятии архитектуры главную роль играет внешний облик здания. Планировочное удобство, продуманность инженерных и надежность конструктивных решений осознаются не сразу, а красота фасада производит впечатление с первого взгляда. Фасадные конструкции – это визитная карточка здания, средоточие творческой мысли архитектора, они отражают основные эстетические и композиционные принципы автора. История строительства знает множество вариантов наружных стен и отделки их лицевой поверхности. Собственно, когда-то конструкция стены и фасад представляли собой единое целое. Каменную кладку средневековых крепостей и бревна изб никто не прятал за декоративной облицовкой.

Многообразие фасадов

Но человечество стремилось к красоте, и брутальная эстетика уступила место более сложным, многосоставным конструкциям. Подобно тому как одежда становилась все наряднее, покрываясь вышивками и рюшами, дома наряжались в кружева каменной резьбы, облицовывались роскошным мрамором, украшались мозаиками и расписывались красками. На фасадах возникали все новые и новые элементы: пилястры, наличники, карнизы, пояса, русты, медальоны. Архитекторы создавали из камня и штукатурки шедевры, до сих пор поражающие гармонией. Со временем изменились материалы, конструкции, эстетические воззрения. А главное, изменилось отношение к фасаду.

ОСНОВНАЯ ФУНКЦИЯ

Как всякая часть здания, фасад должен отвечать основным требованиям, сформулированным Витрувием еще в I веке до н.э.: «польза, прочность, красота». Наружные стены здания – не только его лицо, но и главная защита. От них зависит и комфортность пребывания в доме, и срок его службы. Чтобы в доме было тепло, наружные стены должны либо быть очень толстыми, либо состоять из нескольких слоев: несущего, утепляющего и защищающего. Это было известно еще в глубокой древности, но в конце XIX века стало использоваться в принципиально ином масштабе. Здания росли, что требовало существенного облегчения наружных конструкций. Стены современных домов невозможно возводить по тем же принципам, что и стены старинных крепостей. Они должны быть достаточно легкими и в то же время прочными и теплыми. При каркасной конструктивной схеме наружные стены могут быть либо навесными, либо самонесущими, с минимальной толщиной основного несущего слоя. Функцию теплоизоляций. Стены современных домов невозможно возводить по тем же принципам, что и стены старинных крепостей. Они должны быть достаточно легкими и в то же время прочными и теплыми. При каркасной конструктивной схеме наружные стены могут быть либо навесными, либо самонесущими, с минимальной толщиной основного несущего слоя.

Примечание

Основные природные факторы, влияющие на сохранность фасадов: сильные колебания температуры могут вызвать образование трещин, ветер и осадки могут привести к полному разрушению фасада, влажность может привести к коррозии и гниению, ультрафиолетовое солнечное излучение обесцвечивает фасад, процесс разрушения ускоряется при неблагоприятных экологических условиях.

Функцию теплоизоляции с успехом взяли на себя разработанные в середине ХХ века долговечные негорючие утеплители, а собственно наружный слой стены, образующий фасад, защищает несущие конструкции и утеплитель от прямого воздействия окружающей среды, обеспечивая их долговечность и прочность.

Сегодня в строительстве применяются самые разные фасадные конструкции. Их условно можно разделить на несколько групп: однослойные (каменные, кирпичные, деревянные, штукатурные), с использованием внешней облицовки (плитными материалами, лицевым кирпичом, всеми видами вагонки и т.д.), многослойные фасадные системы. Кроме того, различают традиционные фасады и современные. Первые состоят из природных компонентов и имеют долгую историю применения (например, штукатурка – более 4000 лет). История современных насчитывает не более 150 лет. В них используются искусственные материалы или производные от природных. Их разработка связана с техническим прогрессом в строительной и химической областях, а также с возросшими требованиями к теплоизоляции зданий. Никогда еще энергетика не оказывала такого влияния на архитектуру, как в наши дни. Задачи энергосбережения и снижения теплового загрязнения окружающей среды стали определяющим фактором эволюции фасадных систем в последние десятилетия.

Фасады становятся высокотехнологичными теплоизолирующими системами, вобравшими в себя все достижения материаловедения, теплотехники и строительной механики. На смену традиционным способам отделки при помощи лакокрасочных составов и декоративных штукатурок пришли новые, удовлетворяющие возросшим требованиям к эксплуатационным свойствам покрытий и способные кардинально уменьшить энергопотребление зданий за счет повышения теплоизоляционных качеств. Многослойные фасадные теплоизоляционные системы, или ETICS (External Thermal Insulation Composite Systems), обеспечивают до 25% экономии тепла. В Западной Европе ETICS получили толчок к развитию в период энергетического кризиса начала 1970-х годов. Российский рынок ETICS зародился в 1996 году с появлением повышенных теплотехнических требований к проектированию наружных стеновых ограждающих конструкций.

ТЕПЛОВЫЕ ПОТЕРИ И ЭНЕРГОСБЕРЕЖЕНИЕ

Известно, что тепловые потери в жилых зданиях происходят не только за счет стен, но именно внешние ограждения традиционно считаются их основной причиной. Даже для малоэтажных домов эта величина достигает 35% от общих потерь. В многоэтажных зданиях она может доходить до 60–80%. На величину теплопотерь влияют и используемые материалы. Вода существенно понижает тепловое сопротивление, поэтому ограждающие конструкции должны быть надежно защищены от осадков. В то же время они должны обеспечивать эффективный отвод избыточной влажности из помещения. Дом – не космическая станция, он не может быть герметичным. Более того, долговечность конструкции и комфорт пребывания в здании напрямую зависят от того, насколько хорошо «дышат» его стены. Перед проектировщиками стоит сложная задача – создать такую конструкцию стены, которая при значительной прочности обеспечивала бы эффективный перенос водяных паров из помещения наружу и в то же время преграду для наружной влаги, а также высокое тепловое сопротивление. Только согласованная работа всего «пирога» дает оптимальные результаты. Необходимая толщина каждого слоя и их комбинаторность определяется теплотехническим расчетом, при котором во внимание принимаются такие факторы, как расположение дома, его назначение и конфигурация, этажность, ориентация по сторонам света. Так определяется необходимая конструкция наружных стен, удовлетворяющая действующим нормам (СНиП 23-02-2003 «Тепловая защита зданий»). По требованиям, предъявляемым с 1 января 2000 года к стеновым конструкциям, – СНиП II-3-79, значения приведенного термического сопротивления теплопередачи (Rтр°) по России определяются в интервале 2,1–5,6 кв. м °С/Вт и делают экономически невозможным применение традиционных стеновых материалов. Так, для Москвы Rтр° составляет 3,2 кв. м °С/Вт, что соответствует по толщине 5,0 м железобетона или 2,0 м кирпичной кладки.

На первый план выходят расчетные эксплуатационные расходы на теплоснабжение, которые настолько велики, что диктуют жесткую необходимость применения современных теплосберегающих технологий при новом строительстве и при реконструкции. Закон о техническом регулировании позволяет строителям возводить фасады любого типа, кроме явно пожароопасных. Однако реальное положение таково, что любой панельный или кирпичный дом, не оборудованный теплоизолирующими фасадными системами, уже сегодня вынужден иметь свою электростанцию и котельную, а скоро квартплата в нем сравняется с ценами в пятизвездных отелях. В условиях острого и постоянно возрастающего дефицита энергоснабжения альтернативы теплосберегающим конструкциям фасадов нет.

ОБЪЕКТИВНАЯ РЕАЛЬНОСТЬ: ВЫБОР НЕВЕЛИК

Среди существующих вариантов увеличения термического сопротивления наружных ограждающих конструкций наиболее эффективными и, соответственно, перспективными можно считать системы с наружным утеплением стен и последующей защитой утеплителя либо слоями штукатурки (так называемый «мокрый» способ), либо конструктивными навесными элементами, образующими защитно-декоративный экран, отделяемый от утеплителя воздушной прослойкой (вентилируемые фасады). Каждая из систем имеет ряд преимуществ и недостатков, и только их объективный анализ с учетом исторически сложившегося архитектурного облика города позволяет проектировщику сделать выбор. Оптимальный вариант фасада определяется требованиями конкретной ситуации: задачей, которую поставил архитектор; ограничениями при строительстве в данном месте; результатом, который хочет получить заказчик, и средствами, которыми он располагает. Достоинства и недостатки обеих систем, как это часто бывает, позволяют найти оптимальное решение.

ШТУКАТУРНЫЕ СИСТЕМЫ

Выполнение как внешних, так и внутренних штукатурных работ всегда считалось особо трудоемким и требующим высокой квалификации. В большинстве дошедших до наших дней памятников архитектуры использовалась техника штукатурных работ на фасаде, и спустя сотни лет мы можем любоваться этими шедеврами. представляют собой многослойную «шубу» из утеплителя, прикрепленного к стене, армирующей сетки, грунтовочной штукатурки и шпаклевки. Окончательная отделка такого фасада выполняется лакокрасочными материалами, декоративной штукатуркой или другими . Хотя в технологии современных штукатурных фасадных систем есть существенные новшества, связанные с добавлением дополнительных слоев утеплителя, состав операций и характер работ не претерпели значительных изменений. По-прежнему требуется точное соблюдение – последовательности и времени выполнения, а также высокий уровень мастерства штукатура. Даже на этапе монтажа теплоизоляции необходим тщательный контроль, т.к. именно в этот момент производится окончательное выравнивание стен и выполняются операции, обеспечивающие прочность и долговечность конструкции в целом.


ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ ШТУКАТУРНЫХ СИСТЕМ

По сложности и трудозатратам процесс устройства штукатурного фасада значительно превосходит технологию монтажа вентилируемых систем.

Основные операции:

  1. Подготовка основания (самонесущей, несущей стен или ограждений), выравнивание, пропитка (грунтовка) выровненной стены специальным раствором;
  2. Установка кронштейнов под теплоизоляцию;
  3. Монтаж утеплителя на клеящий раствор (минераловатные плиты);
  4. Заделка швов между плитами теплоизоляции (показан пенопропилен);
  5. Забивка тарельчатых дюбелей в заранее засверленные отверстия по специальной схеме;
  6. Затирка шляпок дюбелей специальным раствором;
  7. Дополнительное укрепление мест сопряжения с деталями фасада специальной арматурой;
  8. Нанесение и затирка армирующей сетки;
  9. Нанесение основного штукатурного слоя;
  10. Нанесение верхнего (декоративного) штукатурного слоя;
  11. Окраска в один (для колерованной штукатурки) или два слоя (для белой).

Все «мокрые» операции требуют значительного времени на просушку. Работа при температурах ниже +5°С не разрешается. Несмотря на необходимость использования более дорогого утеплителя, итоговая стоимость комплектующих и материалов для данной технологии на единицу площади фасада значительно ниже, чем у вентилируемых систем. Кроме того, не представляет особых трудностей выполнение сопряжений с элементами фасада. И самое важное: существует возможность выполнения на фасаде сложных декоративных элементов, что делает эту технологию незаменимой при выполнении реставрационных работ. Однако использование дополнительной облицовки в виде плитки или кирпича ограничено требованиями паропроницаемости и весовыми параметрами.

Преимущества штукатурных фасадных систем: сравнительно невысокая стоимость, эффективное утепление и звукоизоляция сооружения, возможность выравнивать стены в любой плоскости, возможность комбинации с другими системами, устройство монолитной площади утепления, небольшой вес.

Основные недостатки штукатурных фасадных систем: длительные сроки выполнения работ, зависимость проведения работ от погодных условий, проблемы с влажностным режимом утеплителя – пар, проникая из здания, не успевает полностью высохнуть и накапливается в утеплителе. В результате появляются трещины, отслоение штукатурного слоя и т.п.


ВЕНТИЛИРУЕМЫЕ СИСТЕМЫ

Системы с вентилируемой воздушной прослойкой достаточно широко применялись и до введения расширенных требований по теплозащите – для нормализации содержания влаги ограждающих конструкций производственных зданий с «мокрым» режимом, предотвращения перегрева конструкций от солнца, защиты от косых дождей и т.д. Само понятие «вентилируемый фасад» возникло в Германии (нем. beluefteten fassaden). С середины 1950-х годов такие системы широко применяются в жилищном и административном строительстве. Основными элементами фасадов с воздушным зазором являются: мощный теплоизоляционный слой, металлическая подконструкция и облицовочный слой, определяющий архитектурный облик здания. Из-за перепада давления по высоте здания в воздушной прослойке происходит постоянный вертикальный ток воздуха, который позволяет эффективно удалять влагу как из несущей стены, так и из утеплителя, что увеличивает эффективную теплоизоляцию здания, снижая теплопотери примерно на 8%, так как температура воздуха в зазоре на 2–3 градуса выше, чем снаружи.

Выравниваются температурные колебания массива стены, что препятствует появлению деформаций; точка росы сдвигается во внешний теплоизоляционный слой, внутренняя часть стены не отсыревает, не требуется дополнительной пароизоляции. Вообще, применение любой пароизоляции нежелательно в вентилируемых фасадах, так как она препятствует свободному отводу водяного пара наружу. Принято считать, что практически не имеют теплофизических проблем и нормативные требования по теплозащите выполняются легко. При расчетах сопротивления теплопередаче значение коэффициента теплотехнической однородности обычно принимается равным 0,9. Между тем, конструкция насыщена металлическими деталями в сочетании с эффективным теплоизоляционным материалом, а процесс теплопередачи осложнен лучистым и конвективным теплообменом в зазоре, поэтому принимаемое значение коэффициента теплотехнической однородности должно определяться c учетом этих факторов на основании теплотехнического расчета.

Характеристики вентилируемых фасадов позволяют использовать их в регионах с большими перепадами температур, в регионах с высокой влажностью, а также в условиях, где традиционные фасадные материалы имеют достаточно короткий срок службы. Для обеспечения пожарной безопасности в систему навесных фасадов включаются трудносгораемые или несгораемые материалы и изделия. Используются стальная, желательно оцинкованная, система крепежа и панели из искусственного камня, керамика или асбестоцементные листы, специальные алюминиевые панели категории НГ. В качестве утеплителя применяют минвату, которая выдерживает температуру 1200°С. Это особенно важно для зданий повышенной этажности.


Преимущества вентилируемых фасадных систем:

эффективное утепление и звукоизоляция возможность круглогодичного монтажа в самые короткие сроки, увеличение срока эксплуатации фасадов, легкость послемонтажной ревизии, широкий диапазон вариантов наружных панелей.

Недостатки вентилируемых фасадных систем:

высокая стоимость, ограниченность архитектурных решений, необходимость увеличения толщины стены за счет воздушной прослойки и кронштейнов, ограничение возможности утепления откосов (фигурных проемов), возникновение «мостиков холода» из-за металлических элементов крепления, сложности при монтаже сравнительно тяжелых элементов – облицовки из нержавейки, керамогранита и натурального камня.

НАИБОЛЕЕ РАСПРОСТРАНЕННЫЕ НА РОССИЙСКОМ РЫНКЕ С ВОЗДУШНЫМ ЗАЗОРОМ

U-KON, производитель – «Алкон-Трейд» (Москва), «Юкон Инжиниринг» (Нижний Новгород) «Волна», производитель – комбинат «Волна» (Красноярск) «ВФ ВИДНАЛ», производитель «Мосметаллоконструкция» (Москва) «Интерал», «Техноком», производитель – ЭЗ «Техноком СТМ» (Москва) «Каптехнострой», производитель – «Каптехнострой» (Москва) «ИСМ-фасад», производитель – «ИнфоСервисМаркетинг» (Санкт-Петербург) (Красноярск) Мinerit, производитель – OY МINERIT AB (Финляндия) «Марморок», производитель – РВМ-2000 (Москва) «Фасад-Мастер», производитель – «Бревитор Констракшен» (Москва) ДИАТ, производитель – ДИАТ-2000 (Москва) «Гранитогрес», производитель – «Гранитогрес» (Москва) «Полиалпан», производитель «Полиалпан» (Москва)

ТЕХНОЛОГИЯ МОНТАЖА ВЕНТИЛИРУЕМЫХ СИСТЕМ

Монтаж вентилируемой системы представляет собой процесс отверточной сборки, за исключением подгонки облицовки по месту, при которой, как при укладке кафельной плитки, необходимо обеспечить сопряжение геометрических элементов системы с конфигурацией оконных проемов и сопряжение на смежных стенах. Только на фасаде, как правило, отсутствуют элементы, позволяющие скрывать обрезанные места. Кроме того, необходимость подрезки облицовки приводит к значительному удорожанию строительства. Сборку можно вести с люлек, подготовки поверхности не требуется, результаты работы сравнительно легко проконтролировать.

При соответствующем надзоре и правильно выбранных технических решениях (расчет анкеровки и дюбелировки) результат зависит главным образом от качества комплектующих и системы в целом. Теплоизолирующий слой не требует приклеивания с предварительной обработкой подосновы, т.к. он практически не подвергается статическим и ветровым нагрузкам. Теплоизоляцию не нужно дополнительно покрывать, армировать, для нее можно использовать менее прочные и более дешевые виды материалов, чем в штукатурных системах.

Основные этапы сборки вентилируемой системы:

  1. установка кронштейнов и вставок;
  2. сборка подконструкции;
  3. установка теплоизоляции;
  4. выравнивание подсистемы путем регулировки вставок;
  5. установка облицовки.

Поскольку теплообменные процессы обеспечиваются внутри внешней облицовки, возможности проектировщика в выборе облицовочных материалов ограничены только соображениями пожарной безопасности. На сегодняшний день в вентилируемых системах применяются: панели из алюминия, керамогранита, меди, нержавеющей стали, стекла, стекловолокна; асбоцементные плиты с окраской или отделкой, в т.ч. штукатурной. Современные системы позволяют вести облицовку натуральным камнем. В этом случае для компенсации значительного веса плит необходимо предусмотреть усиление подконструкции и тщательно рассчитать количество крепежа на 1 кв. м. Отечественная строительная индустрия освоила выпуск практически всей линейки элементов для вентилируемых систем. Исключение составляет крепеж – винты-саморезы, заклепки, кляммеры, анкера и дюбели. Для обеспечения нормального качества необходимо использовать крепежные изделия ведущих мировых производителей.

СОСТОЯНИЕ РЫНКА ФАСАДНЫХ СИСТЕМ

По данным обзора рынка теплоизоляционных материалов и систем регионов России, выполненного ЗАО «Агентство строительной информации» (Санкт-Петербург), на рынках регионов России представлено более 70 систем утепления фасадов, и это количество делится примерно пополам между штукатурными системами и навесными системами с воздушным зазором. На основании данных компаний-системодержателей и их региональных представителей, экспертных оценок и открытых данных сформулированы оценки емкости российского рынка систем утепления. В прошлом году на территории страны с использованием штукатурных систем было утеплено 4,3–4,5 млн кв. м фасадов зданий. Темп прироста можно оценить как 35–40% в натуральном выражении. 5,4–5,8 млн кв. м было утеплено навесными системами с воздушным зазором. Рынок навесных систем также рос довольно быстро – за 2005 год он увеличился примерно на 30–40%. В ближайшие 2 года следует ожидать продолжения быстрого роста рассматриваемых рынков. На фоне постепенного роста жилищного и прочего строительства, при возросших требованиях к теплосберегающей способности зданий, с учетом того, что системы утепления «вошли в моду» у проектировщиков и строителей, вряд ли стоит прогнозировать рост менее 20–25% в год по обоим типам систем. По прогнозам аналитиков, темп прироста будет даже больше – 30–35%.

Похожие статьи