Самолеты самостоятельной постройки по аэродинамической схеме тандем. Аэродинамическая схема «утка


САМОЛЕТЫ СХЕМЫ "УТКА"

Так как первый взлетевший летательный аппарат тяжелее воздуха-самолет братьев Райт "Флайер" (1903 год) - построен по схеме, которая сегодня известна под названием "утка", представляется логичным начать повествование о летательных аппаратах нетрадиционных схем с самолетов этого класса.

ОШИБОЧНЫЙ ТЕРМИН

Во-первых, термин "утка" - ошибочный. Под "уткой" в авиации общепринято понимать самолет, горизонтальное оперение которого-стабилизатор и рули высоты-расположено перед крылом, а не позади него. Этот термин может быть с таким же успехом применен и к дирижаблям, и к планерам. В частности, первые модели жестких дирижаблей Цеппелина оснащались расположенными впереди горизонтальными поверхностями управления в дополнение к традиционным хвостовым.

Обычно термин "утка" подразумевает расположение в передней части летательного аппарата основных, а не вспомогательных средств аэродинамического управления.

Этот термин появился впервые во Франции; его происхождение, вероятно, связано с тем, что крыло летящей утки находится ближе к ее хвосту, чем к голове, а вовсе не потому, что эта птица управляет своим полетом с помощью специального органа, расположенного перед крылом. Летательные аппараты этой схемы получили довольно широкое распространение.

Многие самолеты схемы "утка" можно рассматривать как самолеты с тандемными крыльями, переднее крыло которых относительно мало. В этом случае переднее горизонтальное оперение (ПГО), состоящее обычно из неподвижных (стабилизаторы) и подвижных (рули высоты) поверхностей, несет значительную часть аэродинамической нагрузки.

В последние годы термин "утка" стал применяться для описания самолетов, оснащенных вспомогательными поверхностями аэродинамического управления, установленными на носовой части, вообще говоря, самолетов довольно традиционных схем (а также некоторых самолетов с треугольным крылом), для обеспечения балансировки летательного аппарата или управления обтекающим его потоком, а не для осуществления основного управления или создания части суммарной подъемной силы, как это бывает на классической "утке".

ПОЧЕМУ ПЕРЕДНЕЕ ГОРИЗОНТАЛЬНОЕ ОПЕРЕНИЕ?

До того, как братья Райт непосредственно приступили к созданию самолета, они
Во-первых, братья Райт прекрасно понимали функции "горизонтального руля" при управлении положением самолета в пространстве и считали, что расположенное впереди оперение будет выполнять такие функции более эффективно, чем хвостовое. В этом они оказались правы, но недостатков такого технического решения они, конечно же, не знали.

Второй основной причиной их выбора было место проведения первых полетов, которые выполнялись с песчаной площадки, и поэтому отсутствовала возможность использования шасси колесного типа. И созданные ранее планеры, и первый "Флайер" оснащались полозковым шасси, при котором фюзеляж самолета располагался очень близко к земле. В то же время братья Райт понимали необходимость большого угла атаки при взлете и посадке. Низкосидящая машина типа "Флайера" наверняка цепляла бы хвостовым оперением за землю, если бы оно было выбрано; поэтому конструкторы отказались от такого решения. Они установили в хвостовой части своего летательного аппарата вертикальный киль. Балки, поддерживающие киль, оснащались шарнирами и с помощью тросовой проводки могли отклоняться вверх, не оказывая влияния на управляемость самолета, так как киль не отклонялся относительно набегающего потока.

ДОСТОИНСТВА

В современном понимании главным преимуществом аэродинамической схемы "утка" считается повышение маневренности самолета, что привлекает к этой схеме создателей военной техники. Более высокие маневренные качества самолетов такой схемы оказались очень полезными в совершенствовании характеристик некоторых из созданных в последнее время ультралегких летательных аппаратов.

Еще одним преимуществом самолетов: схемы "утка" считается то, что практически всегда можно построить такой летательный аппарат с естественной противоштопорной защитой: срыв воздушного потока на ПГО происходит раньше, чем на крыле, создающем большую часть подъемной силы, поэтому нос самолета в этом случае слегка опускается, и машина возвращается в нормальный полет.

НЕДОСТАТКИ

Существенным недостатком чсхемы "утка" является то, что летательным аппаратам этой схемы присуща продольная неустойчивость. Вместо того чтобы демпфировать движения самолета относительно поперечной оси (по тангажу), как это делает, например, оперение стрелы, воздействие воздушного потока на переднее горизонтальное оперение усиливает соответствующие возмущения.

В своих записках О. Райт отмечал, что устойчивость "утки" по тангажу определяется мастерством летчика. Опыт первых полетов показал, что в том случае, когда на переднем горизонтальном оперении создается значительная подъемная сила, она оказывает существенное влияние на балансировку самолета.

Срыв потока на ПГО вызывает примерно такое же воздействие на балансировку летательного аппарата, как, например, складывание пары ножек стола-две другие ножки продолжают поддерживать противоположный конец, и стол падает в ту сторону, где опора отсутствует.

Поэтому противоштопорные достоинства самолетов схемы "утка" довольно скоро поблекли.

Самолеты этой схемы практически полностью исчезли из практики авиастроения вплоть до того, как в начале второй мировой войны начали проводиться углубленные исследования "утки", нацеленные на поиск возможных путей повышения характеристик маневренности самолетов.

Однако и в этот период развития авиации не удалось реализовать достоинства этой схемы. Лишь в последние годы было создано несколько очень удачных самолетов схемы "утка", которые продемонстрировали преимущества этой схемы в некоторых специфических условиях применения авиационной техники.

Однако на этих самолетах уже применялись специальные средства предотвращения мощного срыва потока с ПГО. Это достигается путем увеличения критического угла атаки за счет выдува п отока на ПГО, использования аэродинамических профилей с различными несущими свойствами или применения ПГО в качестве лишь балансировочной поверхности (в этом случае ПГО не создает сколь-нибудь заметного вклада в подъемную силу), например, на самолетах с близким к треугольному крылом большой площади или самоле-тах-"бесхвостках" с крылом прямой стреловидности.

По схеме "утка" построены некоторые из современных ракет, но системы управления этих ракет обычно работают с использованием бортовых ЭВМ и автоматических средств повышения устойчивости, которые вырабатывают и осуществляют балансировочные команды, предотвращающие нарастание возмущений в канале тангажа.

Следует отметить, что все самолеты схемы "утка", реализованные в соответствии с техническим уровнем, достигнутым до 1960-х гг., стали сущим несчастьем. Как бы предвидя это, братья Райт уже в 1909 году (когда они стали использовать колесное шасси, позволяющее приподнять самолет от земли и обеспечить набор угла атаки на разоеге) отказались от ПГО и установили рули высоты в хвостовой части аппарата около руля направления.

Наиболее широкое распространение схема "утка" получила в области ультралегких летательных аппаратов. Этот класс современных летательных аппаратов проделал своеобразный путь назад к полетам того типа, которые выполняли братья Райт и которые характеризуются весьма ограниченным скоростным диапазоном, ограниченной маневренностью и сравнительно небольшой полезной нагрузкой.
В период с 1980 по 1983 гг., вероятно, было спроектировано и построено больше самолетов этой схемы, чем за всю предыдущую историю авиации.

У «стандартной утки» с площадью горизонтального оперения (переднего крыла) в пределах 15...20% площади основного крыла и плечом оперения, равным 2,5...3 В Сах (средней аэродинамической хорды крыла), центр тяжести должен располагаться в пределах от - 10 до - 20%ВСАХ. В более общем случае, когда переднее крыло по параметрам отличается от оперения «стандартной утки», или у «тандема» для определения требуемой центровки удобно услов« но привести эту компоновку к более привычной для понимания нормальной аэродинамической схеме с условным эквивалентным крылом (см. рис.).

Центровка, как и в случае нормальной схемы, должна лежать в пределах 15...25% ВЭКВ (хорды условного эквивалентного крыла), которая находится следующим образом:

При этом расстояние до носка эквивалентной хорды равняется:

Где К - коэффициент, учитывающий разность углов установки крыльев, скосы и торможение потока за передним крылом, равняется:

Учтите, что эмпирические формулы и рекомендации по определению центровки достаточно приблизительны, поскольку взаимное влияние крыльев, скосы и торможение потока за передним крылом рассчитать трудно, точно это определяется только по продувкам. Авиаторам-любителям для экспериментальной проверки центровки самолета необычной схемы рекомендуем пользоваться летающими, в том числе и кордовыми, моделями. В практике авиастроения такой метод иногда применяется. И в любом случае для самолета любительской постройки центровку, определенную по формулам, следует уточнить при выполнении скоростных рулежек и подлетов.

по материалам: СЕРЬЕЗНОВ, В. КОНДРАТЬЕВ "В НЕБЕ ТУШИНА - СЛА" "Моделист-Конструктор" 1988, №3

2018-09-20T19:58:14+00:00

Легкий экспериментальный самолет МиГ-8 «Утка».

Разработчик: ОКБ Микояна, Гуревича
Страна: СССР
Первый полет: 1945 г.

Самолет МиГ-8 был разработан в ОКБ-155 в инициативном порядке с целью проверки устойчивости и управляемости аэродинамической схемы «Утка» в воздухе, изучения работы крыла большой стреловидности и отработки трехколесного шасси с передней опорой.

Работы над экспериментальной машиной начали в феврале 1945 года с проработки компоновки. В проектировании «Утки» активное участие принимали Н.И.Андрианов, Н.З.Матюк, К.В.Пеленберг, Я.И.Селецкий и А.А.Чумаченко. По расчетам МиГ-8 должен был иметь максимальную скорость 240 км/ч, что подтвердила продувка его модели в аэродинамической трубе Т-102 ЦАГИ. Однако вследствие невозможности получения в трубе Т-102 точных характеристик самолета в отношении его поведения на околокритических режимах, специалисты ЦАГИ рекомендовали первые полеты проводить с установленными концевыми фиксированными предкрылками, имеющих размах не менее размаха элеронов. В заключении о возможности первого вылета (в части аэродинамики), составленным инженером лаборатории № 1 ЦАГИ В.Н.Матвеевым, было отмечено, что выход на критические режимы в процессе испытаний самолета следует избегать, так как в отношении штопорных свойств схема «Утка», по его мнению, была очень неблагополучной.

Для определения критической скорости флаттера в ЦАГИ выполнили соответствующий расчет и провели испытание самолета для определения собственных частот колебаний. Расчет проведенный по результатам частотных испытаний дал значение критической скорости равной 328 км/ч, после чего была разрешена эксплуатация самолета МиГ-8 до скорости 270 км/ч по прибору. Статические испытания самолета провели до эксплуатационной нагрузки, составляющей 67% от разрушающей.

Первый вылет на самолете МиГ-8 «Утка» выполнил 13 августа 1945 года летчик-испытатель А.И.Жуков . Ведущим инженером по испытаниям назначили Е.Ф.Нащепыша. полеты выполняли летчики-испытатели А.И.Жуков (ОКБ-155) и А.Н.Гринчик (ЛИИ). Первый этап летных испытаний, на которых главным образом изучали устойчивость и управляемость самолета, проходил в ЛИИ НКАП в период с 28 августа по 11 сентября 1945 года. Для обеспечения большей надежности на самолете были установлены концевые предкрылки с постоянной щелью.

Проведенные испытания на устойчивость показали, что самолет при центровке 28% обладает удовлетворительной продольной устойчивостью, хорошей путевой и излишней поперечной. По рекомендации ЦАГИ для приведения в соответствие путевой и поперечной устойчивости крылу придали обратное поперечное V в 1°, а концевые шайбы развернули на 10° верхними концами внутрь крыла. Кроме того, для уравнивания степени устойчивости с фиксированным и свободным рулем в носок руля высоты поставили груз, создающий постоянное усилие на ручке пилота около 1 кг.

По результатам первого этапа испытаний специалисты ЛИИ также выдали рекомендации по доработке самолета. В связи с этим МиГ-8 в конце 1945 года прибыл на завод № 155. Здесь кили переставили на середину консолей, руль направления оборудовали компенсаторами, а на руле высоты установили управляемый триммер. Кроме того, не передней стойке установили колесо размером 500×150.

14 февраля 1946 года доработанный самолет вывели на заводской аэродром. После контрольного полета, который состоялся 21 февраля, было обнаружено, что температура масла мотора из-за снятых обтекателей не поднимается выше 20°С. В связи с этим на головки цилиндров вновь установили обтекатели. Однако следующий полет, состоявшийся 28 февраля, выявил, что температура масла превысила допустимую. Самолет отправили на доработку, где улучшили обдув цилиндров.

После отладки температурного режима винтомоторной группы 3 марта 1946 года самолет МиГ-8 перегнали с заводского аэродрома в ЛИИ НКАП для продолжения испытаний. В программу второго этапа также включили изучение штопорных свойств самолета. В процессе испытаний крыло вновь подвергли доработке: были установлены законцовки крыла с большим отрицательным углом поперечного V и сняты предкрылки. Опасения в отношении штопорных свойств «Утки» не подтвердились. Самолет входил в преднамеренныи штопор неохотно, и после того как летчик бросал управление «выскакивал» из него «как пробка из воды». Установленный на самолете МиГ-8 толкающий винт дал возможность проверить управляемость на малых скоростях при отсутствии обдува крыла винтом. Кроме того, испытания позволили изучить управляемость самолета на земле, а также вопросы взлета и посадки (заход на второй круг) в условиях отсутствия обдува винтом органов управления. Это в дальнейшем позволило использовать полученные результаты при проектировании истребителей с реактивными двигателями МиГ-9 и МиГ-15 . После испытаний, программа которых полностью была выполнена в мае 1946 года, МиГ-8 «Утка» использовался в качестве связного и транспортного самолета ОКБ. За все время эксплуатации самолета не было ни одной аварии или предпосылки к летному происшествию.

По своей схеме самолет представлял подкосный высокоплан с трехколесным неубирающимся шасси.

Каркас фюзеляжа был выполнен из сосновых брусков и имел фанерную обшивку. В кабине закрытого типа размещались пилот и два пассажира. Входную дверь расположили на левом борту фюзеляжа. Кабина имела хорошее остекление, которое обеспечивало прекрасный обзор вперед и в стороны. Носовая часть фюзеляжа заканчивалась балкой, на которой установили горизонтальное оперение. Хвостовая часть фюзеляжа переходила в моторный отсек, который заканчивался коком винта.

Двухлонжеронное крыло с постоянной относительной толщиной по размаху (12%) имело деревянный набор и полотняную обшивку. Стреловидность крыла в плане 20°, сужение 1, удлинение 6, профиль «Кларк УН». Угол установки крыла 2°. На концах крыла установили шайбы, которые являлись вертикальным оперением. Элероны типа «Фрайз» имели дюралевый каркас и полотняную обшивку.

Общая площадь вертикального оперения 3 м2. Размах горизонтального оперения 3,5 м, площадь — 2,7 м2, угол установки +2°. Профиль оперения NACA-0012. Кили деревянные, рули направления — каркас дюралевый, обшивка полотняная. Стабилизатор деревянный. Каркас руля высоты дюралевый, обшивка полотняная. Управление рулем высоты жесткое, управление рулями направления и элеронами тросовое.

Мотор воздушного охлаждения М-11ФМ мощностью 110 л.с. с двухлопастным деревянным толкающим винтом постоянного шага диаметром 2,35 м, серии 2СМВ-2. Угол установки лопастей винта 24°. Моторама трубчатая сварная. Мотор был полностью закапотирован и имел индивидуальные обдувы для каждого цилиндра. Запуск пневматический. Топливо разместили в двух дюралевых бензобаках установленных в корневой части крыла по одному с каждой стороны. Общая емкость топливных баков 118 л. Маслобак емкостью 18 л находился за пассажирской кабиной.

Стойки шасси металлические сварные. Амортизация воздушно-масляная. Носовая стойка имела масляный демпфер. Колеса основных стоек шасси тормозные размером 500 x 150, носовое колесо — 300 x 150. Колея шасси 2,5 м.

Модификация: МиГ-8
Размах крыла, м: 9,50
Длина самолета, м: 6,80
Высота самолета, м: 2,475
Площадь крыла, м2: 15,00
Масса, кг
-пустого самолета: 746
-нормальная взлетная: 1090
-топлива: 140
Тип двигателя: 1 х ПД М-11ФМ
-мощность, л.с.: 1 х 110
Максимальная скорость, км/ч: 215
Практическая дальность, км: 500
Практический потолок, м: 5200

Первый вариант самолета МиГ-8 «Утка».

Самолет МиГ-8 «Утка». Сверху первый вариант самолета.

Второй вариант самолета МиГ-8 «Утка».

Второй вариант самолета МиГ-8 «Утка».

Второй вариант самолета МиГ-8 «Утка».

Самолет МиГ-8-2 «Утка» в полете.

Изобретение относится к самолетам с передним горизонтальным оперением. Самолет схемы «утка» включает крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение (ПГО). Самолет имеет равномерную загруженность крыла и ПГО на единицу площади, при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2. Изобретение направлено на уменьшение размеров самолета. 1 ил.

Изобретение относится к самолетам с передним горизонтальным оперением, преимущественно к сверхлегким, спортивным.

Известен самолет схемы «утка», включающий крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение .

У самолета схемы «утка» загруженность переднего горизонтального оперения (ПГО) на единицу площади существенно меньше, чем у крыла. Такое положение является следствием того, что отношение расстояния между планами ПГО к среднему арифметическому величин хорд этих планов составляет всего 0,7. Поскольку несущая площадь ПГО используется неэффективно, требуется увеличение размеров площади крыла и переднего горизонтального оперения, что увеличивает размеры самолета.

Технической задачей, решаемой настоящим изобретением, является уменьшение размеров самолета.

Поставленная задача решается за счет того, что согласно изобретению в самолете схемы «утка», включающем крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение (ПГО), имеется равномерная загруженность крыла и ПГО на единицу площади, обеспечиваемая при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2.

Такое выполнение конструкции самолета позволяет уменьшить его размеры.

Изобретение поясняется конкретным примером его выполнения и прилагаемым чертежом.

На фиг. 1 изображено сечение бипланного переднего горизонтального оперения самолета схемы «утка» по плоскости, параллельной базовой плоскости самолета, выполненного согласно изобретению.

Устройство «Самолет схемы «утка» включает крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение, состоящее из нижнего плана и верхнего плана. При этом удельная нагрузка ПГО равна удельной нагрузке крыла и составляет, например, 550 ньютонов на 2.2 квадратный метр. То есть имеется равномерная загруженность крыла и ПГО на единицу площади.

На фиг. 1 величина хорды нижнего плана 1 ПГО обозначена литерой bн, а величина хорды верхнего плана 2 - литерой bв. Расстояние между верхним 2 и нижним 1 планами обозначено буквой h.

Хорда bн нижнего плана 1 равна хорде bв верхнего плана 2 и составляет, например, 300 мм. Расстояние h между планами 1 и 2 равно, например, 360 мм. При этом отношение расстояния h к среднему арифметическому величин хорд планов составляет 1,2.

Величина указанного отношения обеспечивает равномерную загруженность крыла и ПГО для сверхлегких спортивных самолетов. Это следует из следующих обстоятельств.

Уменьшение величины h приводит с одной стороны к смещению назад фокуса самолета, что положительно до тех пор, пока загруженность ПГО не сравняется с загруженностью крыла. С другой стороны уменьшение величины h сопровождается увеличением индуктивного сопротивления ПГО, что, безусловно, отрицательно. В связи с этим, явным образом невозможно определить, какую именно величину расстояния между планами ПГО следует выбирать. При этом надо иметь в виду, что с точки зрения уменьшения суммарной площади крыла и ПГО и, следовательно, размеров самолета должно выполняться условие равномерной загруженности крыла и ПГО на единицу площади.

При одинаковой, или почти одинаковой загруженности крыла и ПГО выполняется условие превышения на три градуса критического угла атаки крыла над критическим углом атаки ПГО в их посадочной конфигурации. Это условие является обязательным для предотвращения «клевка» - резкого опускания носа самолета из-за срыва потока на ПГО. При этом незначительная разница загруженности возможна как в пользу ПГО, так и крыла.

Величина вышеприведенного соотношения выявлена посредством аналитических исследований и проверки их результатов посредством летных испытаний модели самолета, на которой имелась возможность изменять расстояние между планами ПГО.

ИСТОЧНИКИ ИНФОРМАЦИИ

Самолет схемы «утка», включающий крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение (ПГО), отличающийся тем, что в нем имеется равномерная загруженность крыла и ПГО на единицу площади, обеспечиваемая при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2.

Похожие патенты:

Изобретение относится к области авиации, в частности к конструкциям высокоскоростных летательных аппаратов. Летательный аппарат содержит фюзеляж с кабиной управления, треугольной формы крыло, двигатели, установленные с возвышением над крылом, хвостовое оперение, шасси.

Изобретение относится к авиации, более конкретно - к аппаратам тяжелее воздуха, а именно к самолетам схемы “утка”, и может быть использовано в конструкции пассажирских, транспортных самолетов для повышения их экономичности и топливной эффективности.

Изобретение относится к области летательных аппаратов. Носовая часть летательного аппарата содержит кабину управления с вытянутой вперед головкой в форме конуса, снабженной поворотной на вертикальной оси деталью в виде клина, конец которой выполнен острым по направлению к набегающему потоку воздуха, имеет возможность отклонения влево и вправо на угол от 0о до 10о с помощью поворотного гидродвигателя/пневмодвигателя и совершения колебательных движений, приводящих к синусоидального вида траектории полета летательного аппарата. Изобретение направлено на повышение маневренности летательного аппарата в горизонтальной плоскости. 1 з.п. ф-лы, 3 ил.

Изобретение относится к летательным аппаратам легкомоторной авиации. Мотопланер содержит фюзеляж, двигатель, несущее крыло и вспомогательное крыло, рычаги приводов в управлении крыльев, руля поворота, колеса, руля высоты. Несущее крыло оснащено шарнирными узлами, из которых два расположены симметрично относительно поперечной оси симметрии на лонжероне. Один шарнирный узел расположен на вспомогательном лонжероне и закреплен на стойке, которая закреплена шарнирно на ползуне, подвижно установленном в направляющих рамы, и связан со стойкой штурвала подпружиненной тягой. Вспомогательное крыло состоит из двух независимых консолей, посаженных подвижно на поперечную ось, неподвижно закрепленную в носовой части рамы, оснащенных рычагами, связанными тягами с двуплечим рычагом штурвала. Стойка переднего колеса, подвижно закрепленная во втулке рамы, оснащена обтекателем колеса, выполненным в форме поворотного киля, и оснащена двуплечим рычагом, снабженным компенсаторами. Изобретение направлено на повышение безопасности полета. 1 з.п. ф-лы, 9 ил.

Группа изобретений относится к авиационно-космической технике и может быть использована для осуществления полетов в атмосфере и космическом пространстве, при взлёте с Земли и возвращении на неё. Аэрокосмический самолёт (АКС) выполнен по аэродинамической схеме «утка-бесхвостка». Носовые плоскости и крылья образуют совместно с фюзеляжем дельтообразную несущую поверхность. Ядерный ракетный двигатель (ЯРД) содержит теплообменную камеру, состыкованную с ядерным реактором через радиационную защиту. В качестве рабочего тела используется (частично) атмосфера, сжижаемая бортовыми установками ожижения. Питающие и охлаждающие бортовые турбоагрегаты и турбоэлектрогенераторы, а также управляющие реактивные двигатели подключены к теплообменной камере с возможностью работы непосредственно на маршевом рабочем теле. При отключенном маршевом сопле в ЯРД предусмотрено специальное запорное устройство. В долговременных аэрокосмических полетах АКС периодически дозаправляется сжижаемой атмосферной средой. Техническим результатом группы изобретений является повышение эффективности АКС с ЯРД за счет повышения их тяговооруженности и термодинамического качества при обеспечении устойчивости и управляемости полета. 2 н. и 3 з.п. ф-лы, 10 ил.

Изобретение относится к области авиационной техники. Сверхзвуковой самолет с крыльями замкнутой конструкции (ССКЗК) имеет планер с передним горизонтальным оперением, два киля, низко расположенное переднее крыло, имеющее концевые крылышки, соединенные по дуге с концами высокорасположенного заднего крыла, корневые части которого соединены с концами отклоненных наружу килей, фюзеляж и турбореактивные двухконтурные двигатели (ТРДД). ССКЗК выполнен по аэродинамической схеме продольного триплана с разнонаправленными в поперечной плоскости стреловидными крыльями замкнутой конструкции. Передние и задние части гондол ТРДД смонтированы в изломах под внутренней частью заднего крыла и над внутренней частью стабилизатора переменной стреловидности U-образного оперения, имеющего на левой и правой консолях как внутренние рулевые поверхности, смонтированные с внутренних бортов соответствующих гондол, так и переднюю и заднюю кромки. Комбинированная силовая установка имеет разгонно-маршевые ТРДД и вспомогательный маршевый прямоточный воздушно-реактивный двигатель. Изобретение направлено на улучшение естественного ламинарного сверхзвукового обтекания системы крыльев. 4 з.п. ф-лы, 3 ил.

Изобретение относится к авиации. Сверхзвуковой самолет с тандемными крыльями имеет продольную компоновку триплана и содержит фюзеляж с плавным сопряжением наплывов дельтовидного в плане крыла (1), низкорасположенное заднее крыло (8) типа обратная “чайка”, переднее горизонтальное оперение (6), вертикальное оперение, выполненное совместно со стабилизатором (7), два турбореактивных двухконтурных двигателя, передние и задние части которых смонтированы соответственно под крылом типа чайка и по внешним их бортам с консолями стабилизатора и трехопорное шасси. Фюзеляж (3) снабжен конусообразным гасителем (4) звукового удара в носовом обтекателе (5). Крылья выполнены соответственно с отрицательным и положительным углами их поперечного V, имеют переменную стреловидность и образуют при виде спереди ромбовидную замкнутую конструкцию. Стабилизатор выполнен с обратной V-образности с округленной вершиной и оснащен гондолой (14) двигателя. Изобретение повышает аэродинамическую эффективность летательного аппарата. 6 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к области авиационной техники. Сверхзвуковой конвертируемый самолет содержит планер, включающий переднее горизонтальное оперение, вертикальное оперение, переднее треугольное крыло типа чайка, заднее крыло с трапециевидными консолями, разгонно-маршевый реактивный двигатель и вспомогательные маршевые прямоточные воздушно-реактивные двигатели. Переднее крыло и заднее крыло размещены в замкнутой конструкции продольного триплана с возможностью преобразования полетной конфигурации. Изобретение направлено на повышение бесшумности полета путем улучшения ламинарного сверхзвукового обтекания крыльев. 5 з.п. ф-лы, 3 ил.

Изобретение относится к летательным аппаратам схем «утка» и «нормальная». Летательный аппарат (ЛА), включает механизированное крыло и флюгерное горизонтальное оперение (ФГО), с которым связан серворуль. ФГО (1) с серворулем (3) шарнирно размещены на оси вращения. Производная по углу атаки ЛА коэффициента подъемной силы ФГО повышается от нуля до необходимой величины за счет того, что угол между базовыми плоскостями ФГО (1) и ЛА изменяется кратно изменению угла между базовыми плоскостями серворуля (3) и ЛА при изменении угла атаки ЛА механизмом из элементов (4, 5, 6, 7, 8, 9, 10). В «утке» угол порота ФГО меньше угла поворота серворуля, а в нормальной схеме - больше. В результате в обеих схемах фокус смещается назад. В нормальной схеме это позволяет увеличить нагрузку на стабилизатор - ФГО, а в «утке» - использовать современные средства механизации крыла при сохранении статической устойчивости. Изобретение направлено на уменьшение площади крыла за счет оптимизации загруженности горизонтального оперения. 3 ил.

Изобретение относится к авиационной технике. Летательный аппарат (ЛА) аэродинамической схемы «флюгерная утка» содержит механизированное крыло и флюгерное переднее горизонтальное оперение (ФПГО) (10) с серворулем (3), которые шарнирно размещены на оси вращения ОО1. Производная по углу атаки ЛА коэффициента подъемной силы ФПГО повышается от нуля до необходимой величины за счет того, что угол между базовыми плоскостями ФПГО (10) и ЛА изменяется лишь на часть изменения угла между базовыми плоскостями серворуля (3) и ЛА при изменении угла атаки ЛА механизмом из элементов (11, 12, 13). Для управления по тангажу ось ОО3 имеет возможность смещаться к оси ОО1 или от нее, при этом ее положение зафиксировано тягой (14), являющейся элементом системы управления. Изобретение направлено на уменьшение площади крыла за счет уравнивания с ним крейсерской загруженности ФПГО. 3 з.п. ф-ы, 4 ил.

Изобретение относится к авиации. Сверхзвуковой преобразуемый самолет содержит фюзеляж (3), трапециевидное ПГО, стабилизатор (7), силовую установку, включающую два турбореактивных двухконтурных двигателя форсажных в гондолах, размещенных по обе стороны от оси симметрии и между килями (18), смонтированных на конце фюзеляжа (3) на верхних и боковых его частях. Самолет также содержит переднее крыло (1) с наплывом (2), выполненное с переменной стреловидностью типа «обратная чайка», снабженное предкрылками (8), заостренными законцовками (9), флапперонами (10). Сзади и ниже поверхностей первого крыла (1) на балках установлены цельноповоротные консоли заднего крыла (13), снабженные закрылками (14), с возможностью поворота в вертикальной поперечной плоскости вокруг продольной оси на поворотной средней части (15) балки. Также самолет содержит U-образное оперение, имеющее кили (18) с серповидной задней кромкой и цельноповоротными развитыми заостренными законцовками (19). Изобретение улучшает подъемную силу и управляемость и повышает аэродинамическую эффективность, а также уменьшает шум самолета. 3 з.п. ф-лы. 1 ил.

Изобретение относится к области авиации, в частности к конструкциям самолетов вертикального взлета и посадки (СВВП). СВВП выполнен по схеме "утка", снабжен дополнительным хвостовым рулем высоты, состоящим из закрепленных с возможностью поворота на оси вращения носовой части и хвостовой части с нижней и верхней поверхностями. Ширина хвостового руля высоты равна ширине фюзеляжа. Насадок каждого подъемно-маршевого вентилятора снабжен боковыми ограничителями потока воздуха от вентилятора. Поворотные профили решеток выполнены в виде сборных гибких лопаток, а выходное сечение насадка выполнено сложной формы с верхней и нижней горизонтальными гибкими кромками. Выхлопные сопла двигателей прилегают к верхней поверхности дополнительного хвостового руля высоты, по краям нижней поверхности фюзеляжа установлены продольные гребни. Достигается возможность получения дополнительной подъемной силы на взлете, посадке и переходных режимах полета. 5 з.п. ф-лы, 4 ил.

Изобретение относится к самолетам с передним горизонтальным оперением. Самолет схемы «утка» включает крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение. Самолет имеет равномерную загруженность крыла и ПГО на единицу площади, при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2. Изобретение направлено на уменьшение размеров самолета. 1 ил.

Идеи наших читателей

ЮАН-2 «Sky Dweller> на авиасалоне МАКС-2007

ЯпЬтсрнатиЗнар

На МАКС-2009 этого самолёта ещё не будет -конструкция совершенствуется, и следующая её версия создаётся в значительной мере из деталей и узлов предыдущей. А вот на прошлом МАКСе сверхлёгкий ЮАН-2 вызвал большой интерес, несмотря даже на подпорченный многочисленными испытаниями внешний вид. Потому что это не просто ещё один СЛА. В самолёте реализована аэродинамическая схема - так называемая «флюгерная утка», - которую без натяжки можно назвать революционной. В этой статье автор идеи и руководитель строительства опытных машин, молодой авиаконструктор Алексей Юрконенко, обосновывает преимущества новой схемы. По его мнению, она идеальна для неманёвренных самолётов, и в этой категории - весьма, кстати сказать, обширной ~ может стать основой нового направления в развитии мирового самолётостроения.

Применение современных технологий проектирования самолётов привело к результату, на первый взгляд, парадоксальному: процесс улучшения характеристик авиационной техники «потерял темп». Найдены новые аэродинамические профили, оптимизирована механизация крыла, сформулированы принципы построения рациональных структур авиационных конст

рукций, улучшена газодинамика двигателей... Что же дальше, неужели развитие самолёта пришло к своему логическому завершению?

Что ж, эволюция самолёта в рамках нормальной, или классической, аэродинамической схемы действительно замедляется, На авиационных выставках и салонах массовый зритель находит огромное и пёстрое многообразие; опыт

ный же специалист видит принципиально одинаковые самолёты, отличающиеся лишь по эксплуатацией но-тех-пологическим признакам, но имеющие общие концептуальные недостатки,

«КЛАССИКА»: ПЛЮСЫ И МИНУСЫ

Напомним, что пол термином «аэродинамическая схема самолёта* подразумевается способ обеспечения статической устойчивости и управляемости самолёта в канале тангажа 1 .

Главное и, пожалуй, единственное положительное свойство классической аэродинамической схемы заключается в том, что расположенное за крылом горизонтальное оперение (ГО) позволяет без особых трудностей обеспечить продольную статическую устойчивость на больших углах атаки самолёта".

Основным недостатком классической аэродинамической схемы является наличие так называемых потерь на балансировку, которые возникают из-за необходимости обеспечения запаса продольной статической устойчивости самолёта (рис. I). Таким образом, результирующая подъёмная сила самолёта оказывается меньше, чем подъёмная сила крыла, на величину отрицательной подъёмной силы ГО.

Максимальное значение потерь на балансировку имеет место на взлётно-посадочных режимах при выпущенной механизации крыла, когда подъёмная сила крыла и, следовательно, пикирующий момент, ею обусловленный (см. рис. 1), имеют максимальное значение. Существуют, например, пассажирские самолёты, у которых при полностью выпущенной механизации отрицательная подъёмная сила ГО равна 25% их веса. Значит, примерно на ту же величину переразмерено крыло, и все экономические и эксплуатационные показатели такого летательного аппарата, мягко говоря, далеки от оптимальных значений.

АЭРОДИНАМИЧЕСКАЯ СХЕМА «УТКА»

Как избежать этих потерь? Ответ прост: аэродинамическая компоновка статически устойчивою самолёта должна исключать балансировку с отрицательной подъёмной силой на горизон-

" Тангаж - угловое движение летательного аппарата относительно поперечной оси инерции. Угол тангажа - угол между продольной осью летательного аппарата и горизонтальной гласностью.

1 Угол атаки самолёта - угол между направлением скорости набегающего потока и продольной cmpoume.tbHuu осью самолёта.

Похожие статьи

  • Вкусный омлет для годовалого малыша!

    Дорогие читатели, в этой статье вы узнайте, как приготовить омлет ребенку. Вам станет известно, когда пришло время ввода такого блюда. Выясните, каких правил нужно придерживаться. Ознакомитесь с вариантами приготовления. Первое знакомство...

  • Феодальная раздробленность Руси: причины и последствия

    С 30-х годов XII в. на Руси начинается процесс феодальной раздробленности, что было закономерным этапом в развитии феодализма. Великим князьям - Мономаху, его сыну Мстиславу - удавалось на время затормозить неизбежный процесс дробления...

  • К чему снятся желтые туфли

    Но стоит ли так обобщать все сновидения? Ведь на их значение влияет много факторов: цвет, модель и др.А как объясняет сонник туфли во сне? К чему же снится этот универсальный, всеми любимый предмет стиля?Если они были чёрного цветаНовые...

  • Предприятие с обособленными подразделениями: расчет налога на прибыль и представление налоговой декларации Декларация прибыли обособленному подразделению пример

    Наша компания зарегистрировала обособленное подразделение (без выделения на отдельный баланс и отдельного расчетного счета) в феврале 2014г. И головная организация и обособленное подразделение зарегистрированы в одном муниципальном...

  • В храмике своей души ты порядок наведи

    На вопросы телезрителей отвечает иерей Константин Морозов, клирик Храма св. пророка Илии на Пороховых. Передача из Санкт-Петербурга. Добрый вечер, дорогие телезрители! В эфире телеканала «Союз» программа «Беседы с батюшкой», ведущий ди

  • Мир помнит святителя луку

    Умоляю вас, братия, остерегайтесь производящих разделения и соблазны, вопреки учению, которому вы научились, и уклоняйтесь от них (Рим. 16:17). Умоляю вас, братия, именем Господа нашего Иисуса Христа, чтобы все вы говорили одно, и не...