Резонансная схема импульсного источника питания. Резонансный инвертор, преобразователь напряжения повышающий

Резонансный трансформатор есть у каждого, но мы настолько к ним привыкли, что не замечаем как они работают. Включив радиоприемник, мы настраиваем его на радиостанцию, которую хотим принять. При надлежащем положении ручки настройки приемник будет принимать и усиливать колебания только тех частот, какие передает эта радиостанция, колебания других частот он не примет. Мы говорим, что приемник настроен.

Настройка приемника основана на важном физическом явлении резонанса. Вращая ручку настройки, мы изменяем емкость конденсатора, а стало быть и собственную частоту колебательного контура. Когда собственная частота контура радиоприемника совпадает с частотой передающей станции, наступает резонанс. Сила тока в контуре радиоприемника достигает максимума и громкость приема данной радиостанции - наибольшая

Явление электрического резонанса позволяет настраивать передатчики и приемники на заданные частоты и обеспечить их работу без взаимных помех. При этом происходит умножение электрической мощности входного сигнала в несколько раз

В электротехнике происходит то же самое

Подключим конденсатор к вторичной обмотке обычного сетевого трансформатора, при этом ток и напряжение данного колебательного контура окажутся сдвинутыми по фазе на 90°. Замечательно то, что трансформатор не заметит этого подключения и ток его потребления снизится.

Цитата от Гектора: "ни один ученый не мог себе вообразить, что секрет ZPE может быть выражен с помощью только трех букв – RLC!"

Резонансная система, состоящая из трансформатора, нагрузки R (в виде лампочки накаливания), батареи конденсаторов C (для настройки в резонанс), 2-канального осциллографа, катушки переменной индуктивности L (для точной установки ПУЧНОСТИ ТОКА в лампочке и пучности напряжения в конденсаторе). В резонансе радиантная энергия, начинает течь в цепи RLC. Для того, чтобы направить её в нагрузку R, необходимо СОЗДАТЬ СТОЯЧУЮ ВОЛНУ и точно совместить пучность тока в резонансном контуре с нагрузкой R.

Процедура: подключите первичную обмотку трансформатора к сети 220 В или к тому источнику напряжения, какое у вас есть. Путем настройки колебательного контура, за счёт ёмкости С, катушки переменной индуктивности L, сопротивления нагрузки R, Вы должны СОЗДАТЬ СТОЯЧУЮ ВОЛНУ, у которой пучность тока появится на юз R. В пучности тока подключена лампа 300 Вт и она горит в полный накал при нулевом напряжении!

КЗ виток в Доп. тр-ре не только нагревается до 400 °С, но вводит его сердечник в насыщение и сердечник также нагревается до 90°С, что можно использовать

Невероятная картина: машина дает ток, равный нулю, но распадающийся на два разветвления, по 80 Ампер в каждом. Не правда ли, недурной пример для первого знакомства с переменными токами?"

Максимальный эффект от применения резонанса в колебательном контуре можно получить при его конструировании с целью повышения добротности. Слово «добротность» имеет смысл не только «хорошо сделанного» колебательного контура. Добротность контура - это отношение тока, протекающего через реактивный элемент, к току, протекающему через активный элемент контура. В резонансном колебательном контуре можно получить величину добротности от 30 до 200. При этом, через реактивные элементы: индуктивность и емкость протекают токи, намного больше, чем ток от источника. Эти большие «реактивные» токи не покидают пределов контура, т.к. они противофазны, и сами себя компенсируют, но они реально создают мощное магнитное поле, и могут «работать», например в эффективность которых зависит от резонансного режима работы

Проанализируем работу резонансного контура в симуляторе http://www.falstad.com/circuit/circuitjs.html (бесплатная программа)

Правильно построеннный резонансный контур (резонанс нужно строить, а не собирать из того что оказалось под рукой ) потребляет от сети лишь несколько ватт, при этом в колебательном контуре имеем киловаты реактивной энергии, которые можно снять для отопления дома или теплицы при помощи индукционного котла или при помощи одностороннего трансформатора

Например, имеем домашнюю сеть 220 вольт, 50 Гц. Задача: получить на индуктивности в параллельном резонансном колебательном контуре ток величиной в 70 Ампер

Закон Ома для переменного тока для цепи с индуктивностью

I = U / X L , где X L - индуктивное сопротивление катушки

Знаем, что

X L = 2πfL, где f - частота 50 Гц, L - индуктивность катушки (в Генри)

откуда найдем индуктивность L

L = U / 2πfI = 220 вольт / 2 3,14 * 50 Гц 70 Ампер = 0.010 Генри (10 мили Генри или 10mH).

Ответ: чтобы получить в параллельном колебательном контуре ток 70 Ампер, необходимо сконструировать катушку с индуктивностью 10 мили Генри.

По формуле Томсона

fрез = 1 / (2π √ (L C)) находим величину емкости конденсатора для данного колебательного контура

С = 1 / 4п 2 Lf 2 = 1 / (4 (3,14 3,14) * 0,01 Генри (50 Гц 50 Гц)) = 0,001014 Фарад (или 1014 микро Фарад, или 1,014 мили Фарад или 1mF)

Потребление от сети данного параллельного резонансного автоколебательного контура составит лишь 6,27 Ватт (см. рисунок ниже)

24000 ВА реактивной мощности при потреблении 1300 Вт Диод перед резонансным контуром

Вывод: диод перед резонансным контуром снижает потребление от сети в 2 раза, диоды внутри резонансного контура снижают потребление ещё в 2 раза. Общее снижение потребляемой мощности в 4 раза!

В заключение:

Параллельный резонансный контур в 10 раз увеличивает реактивную мощность!

Диод перед резонансным контуром снижает потребление от сети в 2 раза,

Диоды внутри резонансного контура дополнительно снижают потребление в 2 раза.

Асимметричный трансформатор имеет две катушки L2 и Ls.

Например, трансформатор изображенный ниже - это разделительный трансформатор 220/220 изготовленный по принципу асимметричного.

Если на Ls подать 220 вольт, то на L2 снимем 110 вольт.

Если на L2 подать 220 вольт, то на Ls снимем 6 вольт.

Асимметрия в передаче напряжения налицо.

Этот эффект можно использовать в схеме Резонансного усилителя мощности Громова/Андреева, заменяя магнитный экран на асимметричный трансформатор

Секрет усиления тока в асимметричном трансформаторе заключается в следующем:

Если через множество асимметричных трансформаторов пропустить электромагнитный поток, то все они не будут влиять на этот поток, т.к. любой из асимметричных трансформаторов не влияет на поток. Реализацией такого подхода является набор дросселей на Ш-образных сердечниках и установленных вдоль оси внешнего воздействующего поля, полученного от катушки Ls.

Если вторичные катушки L2 трансформаторов затем соединим параллельно, то получим усиление тока.

В результате: получаем набор асимметричных трансформаторов организованных в стек:

Для выравнивания поля на краях Ls, могут быть организованы дополнительные витки по её концам.

Катушки изготовлены из 5 секций, на ферритовых сердечниках Ш - типа с проницаемостью 2500, с использованием провода в пластиковой изоляции.

Центральные трансформаторные секции L2 имеют по 25 витков, а крайние трансформаторы 36 витков (для выравнивания наводимого в них напряжения).

Все секции соединены параллельно.

Внешняя катушка Ls имеет дополнительные витки для выравнивания магнитного поля на её концах), при намотке LS была использована однослойная обмотка, число витков зависело от диаметра провода. Усиления тока для этих конкретных катушек - 4-х кратное.

Изменение индуктивности Ls составляет 3% (если L2 закорочена для имитации тока во вторичке (т.е. как-бы к ней подключена нагрузка)

Чтобы избежать потери половины потока магнитной индукции первичной обмотки в незамкнутом магнитопроводе асимметричного трансформатора, состоящем из n-количества Ш-образных или П- образных дросселей, его можно замкнуть, как показано ниже

0. Резонансный генератор свободной энергии. Избыточная мощность 95 Вт на обмотке съёма достигается использованием 1) резонанса напряжений в обмотке возбуждения и 2) резонанса тока в резонансном контуре. Частота 7,5 кГц. Первичное потребление 200 мА, 9 Вольт видео1 и видео2

1. Устройства получения свободной энергии. Патрик Дж. Келли ссылка

Клацалка по Романову https://youtu.be/oUl1cxVl4X0

Настройка частоты Клацалки по Романову https://youtu.be/SC7cRArqOAg

Модуляция НЧ сигала ВЧ сигналом на пуш-пулл ссылка

Электрический резонанс

В колебательном контуре на рисунке емкость С, индуктивность L и сопротивление R включены последовательно с источником ЭДС.

Резонанс в таком контуре называется последовательным резонанском напряжений. Его характерная черта - напряжения на емкости и индуктивности при резонансе значительно больше внешней ЭДС. Последователный резонансный контур как бы усиливает напряжение.

Свободные электрические колебания в контуре всегда затухают. Для получения незатухающих колебаний необходимо пополнять энергию контура с помощью внешней ЭДС.

Источником ЭДС в контуре служит катушка L, индуктивно связанная с выходным контуром генератора электрических колебаний.

Таким генератором может служить электрическая сеть с постоянной частотой f = 50 Hz.

Генератор создает в катушке L колебательного контура некоторую ЭДС.

Каждой величине емкости конденсатора С соответствует своя собственная частота колебательного контура

Которая меняется с изменением емкости конденсатора С. При этом частота генератора остается постоянной.

Таким образом, чтобы возможен был резонанс соответственно частоте подбирают индуктивность L и емкость С.

Если в колебательном контуре 1 включены три элемента: емкость C, индуктивность L и сопротивление R, то как же они влияют на амплитуду тока в цепи все вместе?

Электрические свойства контура определяются его резонансной кривой.

Зная резонансную кривую мы сможем заранее сказать какой амплитуды достигнут колебания при самой точной настройке (точка Р) и как повлияет на ток в контуре изменение емкости С, индуктивности L и активного сопротивления R. Поэтому задача - построить по данным контура (емкости, индуктивности и сопротивлению) его резонансную кривую. Научившись, мы сможем заранее представить, как себя будет вести контур с любыми значениями С, L и R.

Наш опыт в следующем: меняем емкость конденсатора С и замечаем по амперметру ток в контуре для каждого значения емкости.

По полученный данным строим резонансную кривую для тока в контуре. По горизонтальной оси будем откладывать для каждого значения С отношение частоты генератора к собственной частоте контура. По вертикальной отложим отношение тока при данной емкости к току при резонансе.

Когда собственная частота контура fo приближается к частоте f внешней ЭДС, ток в контуре достигает своего максимального значения.

При электрическом резонансе не только ток достигает своего максимального значения, но и заряд, а следовательно и напряжение на конденсаторе.

Разберем роль емкости, индуктивности и сопротивления в отдельности, а затем уже всех вместе.

Заев Н.Е., Прямое преобразование тепловой энергии в электрическую. Патент РФ 2236723. Изобретение относится к устройствам преобразования одного вида энергии в другой и может использоваться для получения электроэнергии без затраты топлива за счет тепловой энергии окружающей среды. В отличие от нелинейных конденсаторов - варикондов, изменение (процентное) емкости которых за счет изменения диэлектрической проницаемости незначительно, что не позволяет использовать вариконды (и устройства на их основе) в промышленных масштабах, здесь используются алюминиевые - оксидные, т.е. обычные электролитические конденсаторы. Заряд конденсатора осуществляется однополярными импульсами напряжения, передний фронт которых имеет наклон менее 90°, а задний фронт - более 90°, при этом отношение длительности импульсов напряжения к длительности процесса заряда составляет от 2 до 5, а после окончания процесса заряда формируют паузу, определяемую соотношением Т=1/RC 10-3 (сек), где Т - время паузы, R - сопротивление нагрузки (Ом), С - емкость конденсатора (фарада), после чего осуществляют разряд конденсатора на нагрузку, время которого равно длительности однополярного импульса напряжения. Особенность способа в том, что после окончания разряда конденсатора формируют дополнительную паузу.

Однополярные импульсы напряжения для зарядки электролитического конденсатора могут иметь не только треугольную форму, главное, чтобы передний и задний фронты не были 90°, т.е. импульсы не должны быть прямоугольной формы. При проведении эксперимента использовались импульсы, полученные в результате двухполупериодного выпрямления сигнала сети 50 Гц. (см. ссылку)

Http:="">Показана необходимость изменения внутренней энергии диэлектрика конденсатора (феррита в индуктивности) за цикл «Зарядка-Разрядка» («намагничивание - размагничивание»), если ∂ε/∂E ≠ 0, (∂µ/∂H ≠ 0),

Емкостное сопротивление 1/2πfC зависит от частоты.

На рисунке показан график этой зависимости.

По горизонтальной оси отложена частота f, а по вертикальной - емкостное сопротивление Xc = 1/2πfC.

Мы видим, что высокие частоты (Xc мало) конденсатор пропускает, а низкие (Xc велико) - задерживает.

Влияние индуктивности на резонансный контур

Емкость и индуктивность оказывают на ток в цепи противоположные действия. Пусть вначале внешняя ЭДС заряжает конденсатор. По мере заряда растет напряжение U на конденсаторе. Оно направлено против внешней ЭДС и уменьшает ток заряда конденсатора. Индуктивность наоборот, с уменьшением тока стремится его поддержать. В следующую четверть периода, когда конденсатор разряжается, напряжение на нем стремится увеличить ток заряда, индуктивность же, наоборот, препятствует этому увеличению. Чем больше индуктивность катушки, тем меньшей величины успеет достичь за четверть периода разрядный ток.

Ток в цепи с индуктивностью равен I = U/2πfL. Чем больше индуктивность и частота, тем меньше ток.

Индуктивное сопротивление потому и называется сопротивлением, что оно ограничивает ток в цепи. В катушке индуктивности создается ЭДС самоиндукции, которая мешает току нарастать, и ток успевает нарастать только до некоторой определенной величины i=U/2πfL. При этом электрическая энергия генератора переходит в магнитную энергию тока (магнитное поле катушки). Так продолжается чеверть периода, пока ток не достигнет своего наибольшего значения.

Напряжения на индуктивности и емкости в режиме резонанса равны по величине и, находясь в противофазе, компенсируют друг друга. Таким образом все приложенное к цепи напряжение приходится на ее активное сопротивление

Поэтому полное сопротивление Z последовательно включенных конденсатора и катушки равно разности между емкостным и индуктивным сопротивлением:

Если учесть также активное сопротивление колебательного контура, то формула полного сопротивления примет вид:

Когда емкостное сопротивление конденсатора в колебательном контуре равно индуктивному сопротивлению катушки

то полное сопротивление цепи Z переменному току будет наименьшим:

т.е. когда полное сопротивление резонансного контура равно лишь активному сопротивлению контура, то амплитуда тока I достигает своего максимального значения: И ПРИХОДИТ РЕЗОНАНС.

Резонанс наступает, когда частота внешней ЭДС равна собственной частоте системы f = fo.

Если менять частоту внешней ЭДС или собстенную частоту fo (расстройка) то, чтобы вычислить ток в колебательном контуре при любой расстройке, нам достаточно подставить в формулу значения R, L, C, w и E.

При частотах ниже резонансной часть энергии внешней ЭДС тратится на преодоление возвращающих сил, на преодоление емкостного сопротивления. В следующую четверть периода направление движения совпадает с направлением возвращающей силы, и эта сила отдает источнику энергии, полученную за первую четверть периода. Противодействие со стороны возвращающей силы ограничивает амплитуду колебаний.

При частотах, больших резонансной, основную роль играет инерция (самоиндукция): внешняя сила не успевает за четверть периода ускорить тело, не успевает внести в цепь достаточную энергию.

При резонансной частоте внешней силе легко качать тело, т.к. частота его свободных колебаний и внешняя сила только преодолевают трение (активное сопротивление). В этом случае полное сопротивление колебательного контура равно только его активному сопротивлению Z = R, а емкостное сопротивление Rc и индуктивное сопротивление RL контура равны 0. Поэтому ток в контуре максимален I = U/R

Резонанс - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс - явление, когда при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность.

Добротность - характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе - чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания

Тесла писал в своих дневниках, что ток внутри параллельного колебательного контура в добротность разы больше, чем вне его.

Последовательный резонанс. Резонанс и трансформатор. Фильм 3

Диодный колебательный контур Рассматривается новая схема колебательного контура с применением двух катушек индуктивности, включенных через диоды. Добротность контура возросла примерно вдвое, хотя уменьшилось характеристическое сопротивление контура. Индуктивность уменьшилась вдвое, а емкость увеличилась

Последовательно-параллельным реонансный колебательный контур

Исследования резонанса и добротности RLC-контура

Мы исследовали компьютерную модель RLC-контура в программе «Открытая физика», нашли резонансную частоту контура, на резонансной частоте исследовали зависимость добротности контура от сопротивления и построили графики.

В практической части работы исследовали реальный RLC-контур с использованием компьютерной программы «Audiotester». Нашли резонансную частоту контура, на резонансной частоте исследовали зависимость добротности контура от сопротивления и построили графики.

Выводы , сделанные нами в теоретической и практической части работы, совпали полностью.

· резонанс в цепи с колебательным контуром наступает при совпадении частоты генератора f c частотой колебательного контура fo;

· с увеличением сопротивления добротность контура падает. Самая высокая добротность при небольших значениях сопротивления контура;

· самая высокая добротность контура ― на резонансной частоте;

· полное сопротивление контура минимально на резонансной частоте.

· попытка прямым путем снять излишки энергии из колебательного контура приведет к затуханию колебаний.

Применения резонансных явлений в радиотехнике неисчислимы.

Однако, в электротехнике применить резонанс мешают стереотипы и негласные современные законы, накладывающие запреты на применение резонанса для получения Свободной энергии. Самым интересное, что все электростанции уже давно пользуются подобным оборудованием, ведь явление резонанса в электрической сети известно всем электромеханикам, но у них совсем иные цели. Когда явление резонанса возникает, идет выброс энергии, который может превосходить норму в 10 раз, и большинство устройств у потребителей перегорают. После этого индуктивность сети изменяется и резонанс исчезает, но перегоревшие устройства не восстановить. Чтобы избежать этих неудобств, устанавливают антирезонирующие вставки, которые автоматически меняют свою емкость и отводят сеть из опасной зоны как только она окажется близкой к резонансным условиям. Если бы резонанс поддерживался в сети специально, с последующим ослаблением силы тока на выходе с резонансной электроподстанции, то потребление топлива снизилось бы в несколько десятков раз и себестоимость производимой энергии снизилась. Но современная электротехника борется с резонансом, создавая антирезонансные трансформаторы и т.п., а у ее сторонников сложились устойчивые стереотипы относительно параметрического резонансного усиления мощности. Поэтому не все явления резонанса реализованы на практике.

Возьмем книгу «Элементарный учебник физики под редакцией академика Г.С. Ландсберга Том III Колебания, волны. Оптика. Строение атома. – М.: 1975г., 640 с. с илл.» откроем ее на страницах 81 и 82 где приведено описание экспериментальной установки для получения резонанса на частоту городского тока 50 Герц.

Здесь ясно показывается, как можно на индуктивности и емкости получить напряжения в десятки раз большие, чем напряжение источника питания.

Резонанс это накопление энергии системой, т.е. мощность источника не надо увеличивать, система накапливает энергию т.к. не успевает её расходовать. Это делается на добавлении энергии в момент максимальных отклонениях в собственной частоте, система производит выброс энергии и замирает в "мертвой точке" в этот момент подается импульс, происходит добавление энергии в систему, т.к. в данный момент её просто нечем расходовать, и происходит рост амплитуды собственных колебаний, естественно он небесконечный и зависит уже от прочности системы, нужно будет вводить еще одну обратную связь для ограничения накачки, я об этом задумался после взрыва первичной обмотки. Так, если не принимать специальных мер, то мощность, развиваемая резонансом, разрушит элементы установки.

Электрическая схема резонансного усилителя мощности тока промышленной частоты. По Громову.

В резонансном усилителе тока промышленной частоты используется явление ферро-резонанса сердечника трансформатора, а также явление электрического резонанса в последовательном колебательном контуре LC-резонанс. Эффект усиления мощности в последовательном резонансном контуре достигается за счет того, что входное сопротивление колебательного контура при последовательном резонансе является чисто активным, а напряжение на реактивных элементах колебательного контура превышает входное напряжение на величину равную добротности контура Q. Для поддержания незатухающих колебаний последовательного контура в резонансе требуется компенсировать только тепловые потери на активных сопротивлениях индуктивности контура и внутреннем сопротивлении источника входного напряжения.

Структурная схема и состав резонансного усилителя мощности, описанная Громовым Н.Н. в 2006 году, приедена ниже

Входной понижающий трансформатор уменьшает напряжение, но увеличивает ток во вторичной обмотке

Последовательный резонансный контур увеличивает напряжение ссылка

Как известно, при резонансе во вторичке Входного понижающего трансформатора, его потребление тока от сети снижается. ссылка

В результате мы получим большой ток и большое напряжение в резонансном контуре, но при этом очень низкое потребления от сети


В резонансном усилителе тока промышленной частоты нагруженный силовой трансформатор вносит расстройку в последовательный колебательный контур и уменьшает его добротность.

Компенсация расстройки резонанса в колебательном контуре осуществляется введением обратной связи с помошью управляемых магнитных реакторов. В цепи обратной связи осуществляется анализ и геометрическое суммирование составляющих токов вторичной обмотки и нагрузки, формирование и регулирование управляюшего тока.

Цепь обратной связи состоит из: части вторичной обмотки силового транформатора, трансформатор тока, выпрямитель и реостат установки рабочей точки, магнитных реакторов.

Для работы на неизменную (постоянную) нагрузку можно применять упрощенные схемы резонансных усилителей мощности.

Структурная схема упрощенного резонансного усилителя тока промышленной частоты представлена ниже.

Простейший резонансный усилитель мощности состоит всего из четырех элементов.

Назначение элементов такое, как в ранее рассмотренном усилителе. Отличие в том, что в простейшем резонансном усилителе производится ручная настройка в резонанс для конкретной нагрузки.

1. Включить силовой трансформатор 2 в сеть и измерить при заданной нагрузке потребляемый им ток.

2. Измерить активное сопротивление первичной обмотки силового трансформатора 2.

5. Выбрать величину индуктивного сопротивления для регулируемого магнитного реактора равную примерно 20% от индуктивного сопротивления силового трансформатора 2

6. Изготовить регулируемый магнитный реактор, с отводами начиная со средины обмотки до ее конца (чем чаще будут сделаны отводы, тем точнее будет настройка в резонанс).

7. По условию равенства индуктивного и емкостного сопротивлений XL=Xc при резонансе рассчитать значение емкости C, которую необходимо включить последовательно с силовым трансформатором и регулируемым магнитным реактором для получения последовательного резонансного контура.

8. Из условия резонанса, перемножить измеренный потребляемый силовым трансформатором ток на сумму активных сопротивлений первичной обмотки и магнитного реактора, и получить ориентировочное значение напряжения, которое необходимо подать на последовательный резонансный контур.

9. Взять трансформатор, обеспечивающий на выходе, найденное по п.8 напряжение и измеренный по п.1 потребляемый ток (на период настройки Усилителя удобней использовать ЛАТР).

10. Запитать от сети через трансформатор по п.9 резонансный контур - (последовательно соединенные конденсатор, первичную обмотку нагруженного силового трансформатора и магнитный реактор).

11. Изменяя индуктивность магнитного реактора путем переключения отводов, настроить цепь в резонанс при пониженном входном напряжении (для точной настройки можно в небольших пределах изменять емкость конденсатора, подключая параллельно основному, конденсаторы небольшой емкости).

12. Изменяя входное напряжение установить значение напряжения на первичной обмотке силового трансформатора 220 В.

13. Отключить ЛАТР и подключить стационарный понижающий трансформатор с таким же напряжением и током

Область применения резонансных усилителей мощности – стационарные электроустановки. Для мобильных объектов целесообразно применять трансгенераторы на повышенных частотах с последующим преобразованием переменного тока в постоянный.

Метод имеет свои тонкости, которые проще понять по методу механической аналогии. Представим себе процесс заряда обычного конденсатора, без диэлектрика, с двумя пластинами и зазором между ними. При заряде такого конденсатора, его пластины притягиваются друг к другу тем сильнее, чем больше заряд на них. При наличии у пластин конденсатора возможности двигаться, расстояние между ними уменьшится. Это соответствует увеличению емкости конденсатора, т.к. емкость зависит от расстояния между пластинами. Таким образом, «истратив» одно и то же количество электронов, можно получить больше запасенной энергии, если емкость увеличилась.

Представьте, что в ведро емкостью 10 литров наливают воду. Предположим, что ведро резиновое, и в процессе его наполнения, его объем увеличивается, например, на 20%. В итоге, сливая воду, мы получим 12 литров воды, хотя ведро при этом уменьшится, и в пустом виде будет иметь объем 10 литров. Дополнительные 2 литра, каким-то образом, в процессе «наливания воды» были «привлечены из среды», так сказать, «присоединились» к потоку.

Для конденсатора, это означает, что если по мере заряда, емкость увеличивается, то энергия поглощается из среды и преобразуется в избыточную запасаемую потенциальную электрическую энергию. Ситуация для простого плоского конденсатора с воздушным диэлектриком естественная (пластины сами собой притягиваются), а это означает, что мы можем конструировать простые механические аналоги варикондов, в которых избыточная энергия запасается в форме потенциальной энергии упругого сжатия пружины, помещенной между пластинами конденсатора. Этот цикл не может быть такой же быстродействующий, как в электронных устройствах с варикондами, но заряд, на пластинах конденсатора большого размера, может быть накоплен значительный, и устройство может генерировать большую мощность, даже при низкочастотных колебаниях. При разряде, пластины вновь расходятся на исходное расстояние, уменьшая начальную емкость конденсатора (пружина освобождается). При этом должен наблюдаться эффект охлаждения среды. Форма зависимости диэлектрической проницаемости сегнетоэлектрика от напряженности приложенного поля показана на графике Рис. 222.


На начальном участке кривой, диэлектрическая проницаемость, а значит и емкость конденсатора, увеличивается при росте напряжения, а затем она падает. Заряжать емкость надо только до максимальной величины (вершина на графике), иначе теряется эффект. Рабочий участок кривой помечен на графике Рис. 210 серым цветом, изменения напряжения в цикле «заряд – разряд» должны происходить в пределах этого участка кривой. Простой «заряд-разряд» без учета максимальной рабочей точки кривой зависимости проницаемости от напряженности поля не даст ожидаемого эффекта. Эксперименты с «нелинейными» конденсаторами, представляется перспективными для исследования, т.к. в некоторых материалах зависимость диэлектрической проницаемости сегнетоэлектрика от приложенного напряжения позволяет получать не 20%, а 50-ти кратные изменения емкости

Применение ферритовых материалов, по аналогичной концепции, также требует наличия соответствующих свойств, а именно, характерной петли гистерезиса при намагничивании и размагничивании, Рис. 2.

Этими свойствами обладают почти все ферромагнетики, поэтому преобразователи тепловой энергии среды, использующие данную технологию, могут быть подробно экспериментально изучены. Пояснение: «гистерезис», (от греческого hysteresis - запаздывание) – это различная реакция физического тела на внешнее воздействие, в зависимости от того, подвергалось ли это тело ранее тем же воздействиям, или подвергается им впервые. На графике, Рис. 223, показано, что намагничивание начинается с нулевой отметки, достигает максимума, а затем, начинается спад (верхняя кривая). При нулевом внешнем воздействии, отмечается «остаточное намагничивание», поэтому, когда цикл повторяется, то расход энергии меньше (нижняя кривая). При отсутствии гистерезиса, нижняя и верхняя кривые идут вместе. Избыточная энергия такого процесса тем больше, чем больше площадь петли гистерезиса. Н.Е.Заевым было экспериментально показано, что удельная плотность энергии для таких преобразователей составляет примерно 3 кВт на 1 кг ферритового материала, при максимально допустимых частотах циклов намагничивания и размагничивания.

https://youtu.be/ydEZ_GeFV6Y

Приоритеты: заявки Н.Е.Заева на открытие «Охлаждение некоторых конденсированных диэлектриков меняющимся электрическим полем с генерацией энергии» №32-ОТ- 10159; 14 ноября 1979 года http://torsion.3bb.ru /viewtopic.php?id=64 , заявка на изобретение "Способ преобразования тепловой энергии диэлектриков в электрическую", № 3601725/07(084905), 4 июня 1983 года, и «Способ преобразования тепловой энергии ферритов в электрическую», №3601726/25(084904). Метод был запатентован, патент RU2227947, 11 сентября 2002 года.

Нужно добиться, чтобы трансформаторное железо начало хорошо рычать, т.е возник ферро-резонанас. Не индукционный эффект между емкость и катушкой, а чтобы железо между ними работало хорошо. Железо должно работать и накачивать энергию, сам по себе электрический резонанс не качает, а железо является стратегическим устройством в этом устройстве.

Комбинированный резонанс обусловлен взаимодействием между спиновым магнитным моментом электрона и полем Е (см. Спин-орбитальное взаимодействие). Комбинированный резонанс был впервые предсказан для зонных носителей заряда в кристаллах, для которых он может превышать по интенсивности ЭПР на 7 - 8 порядков ссылка

Электрическая схема соединений представлена ниже.

Работа этого трансформатора связана с обычной электросетью. Пока я не собираюсь делать самозапитку, но это возможно сделать, надо вокруг него сделать такой же силовой трансформатор, один токовый трансформатор и один магнитный реактор. Все это обвязать и будет самозапитка.. Другой вариант самозапитки - это намотать 12 вольтную съемную вторичную катушку Тр2 на втором транформаторе, далее использовать компютерный ИБП, которого передать 220 Вольт уже на вход

Самое главное сейчас - это просто есть сеть, которая подается на схему, а я просто увеличиваю энергию за счет резонанса и питаю отопительный котел в доме. Это индуктивный котел, который называется ВИН. Мощность котла 5 кВт. Целый год этот котел проработал с моим умным трансформатором. За сеть я плачу как за 200 Вт.

Трансформатор может быть любым (на тороидном или П-образном сердечнике). Просто надо пластины трансформатора хорошо изолировать, покрасить, чтобы токов Фуко в нем было как можно меньше, т.е. чтоб сердечник при работе не грелся вообще.

Просто резонанс дает реактивную энергию, а переводя реактивную энергию в любой элемент потребления она становится активной. Счетчик до трансформатора при этом почти не крутится..

Для поиска резонанса я использую прибор Е7-15 еще советского исполнения. С ним я легко добиваюсь резонанса в любом трансформаторе.

Итак, за суровый зимний месяц я заплатил 450 рублей.

С 1-го трансформатора с тороидальным сердечником на 1 кВт я имею во вторичке 28 ампер и 150 вольт. Но нужна обратная связь через токовый трансформатор. Мотаем катушки: Сделать каркас. Когда первичную намотал по всему периметру в два слоя (проводом с диаметром 2,2 мм c учетом 0,9 витка на 1 вольт, т.е. на 220 Вольт в первичной обмотке получается 0,9 витков/В х 220 В = 200 витков), то магнитный экран положил (из меди или латуни), когда вторичную намотал (проводом с диаметром 3 мм с учетом 0,9 витка на 1 Вольт), то снова магнитный экран положил. На вторичной обмотке 1-го транса, начиная с середины, т.е. с 75 Вольт, я сделал множество выводов петлей (около 60-80 штук, кто сколько сможет, примерно 2 Вольта на вывод). На всей вторичной обмотке 1-го трансформатора нужно получить 150 - 170 Вольт. Для 1 кВт я выбрал емкость конденсатора 285 мкФ (тип используемых пусковых конденсаторов для эл. двигателя на рисунке ниже), т.е. два конденсатора. Если использовать 5 кВт трансформатор, то я буду использовать 3 таких конденсатора (неполярный для переменного тока 100 мкФ 450 Вольт). Проявление неполярности у такого кондера незначительное, чем меньше диаметр и короче баночка, тем лучше неполярность. Лучше выбирать более короткие коденсаторы, побольше количество, но меньшей емкости. Я нашел резонанс на середине выводов вторичной обмотки Т1. В идеале для резонанса замеряете индуктивное сопротивление и емкостное сопротивление контура, они должно быть равны. Вы по звуку услышите как трансформатор начнет сильно гудеть. Синусоида резонанса на осциллографе должна быть идеальной. Существуют разные частотные гармоники резонанса, но при 50 Гц трансформатор гудит в два раза громче, чем при 150 Гц. Из электротехнического инструмента я использовал токовые клещи, которые меряют частоту. Резонанс во вторичке Т1 вызывает резкое понижение тока в его первичной обмотке, который составил всего 120-130 мА. Чтобы не было претензий от сетевой компании, то параллельно первичной обмотке первого трансформатора устанавливаем конденсатор и доводим cos Ф = 1 (по токовым клещам). Напряжение я проверял уже на первичной обмотке Второго трансформатора. Итак, в этом контуре (вторичная обмотка 1-го трансформатора -> первичная обмотка 2-го трансформатора) у меня протекает ток 28 Ампер. 28А х 200В = 5,6 кВт. Эту энергию я снимаю с вторичной обмотки 2-го трансформатора (провод сечением 2,2 мм) и передаю на нагрузку, т.е. в индукционный электро-котел. На 3 кВт диаметр провода вторичной обмотки 2го трансформатора составляет 3 мм

Если хотите получить на нагрузке выходную мощность не 1,5 кВт, а 2 кВт, то сердечник 1го и 2го трансформатора (см габаритный расчет мощности сердечника) должны быть на 5 кВт

У 2го трансформатора (сердечник которого надо также перебрать, покрасить балонной краской каждую пластину, заусенцы убрать, тальком посыпать, чтобы пластины не прилипали друг к другу) надо сначала экран положить потом первичку намотать, потом на первичку 2го трансформатора снова экран положить. Между вторичкой и первичкой все-равно должен быть магнитный экран. Если мы получили напряжение в резонансном контуре 220 или 300 Вольт, то первичку 2го трансформатора нужно расчитать и мотать также на эти же 220 или 300 вольт. Если по рачету 0,9 витка на вольт, то количество витков будет соответственно на 220 или 300 Вольт. Возле электро-котла (в моем случае это индукционный котел ВИМ 1,5 кВт) я ставлю конденсатор, ввожу этот контур потребления в резонанс, то смотрю по току или по COS Ф, чтобы COS Ф был равен 1. Тем самым мощность потребления уменьшается и контур, где у меня крутится мошность 5,6 кВт, разгружаю. Я катушки мотал как в обычом трансформаторе - одна над другой. Конденсатор 278 мкФ. Конденсаторы я беру стартерные или сдвигающие, чтобы они на переменном токе хорошо работали. Резонансный трансформатор от Александра Андреева дает прибавку 1 к 20

Первичную обмотку расчитываем как обычный трансформатор. Когда собрали, то если ток там появится в пределах 1 - 2 Ампер, то лучше разобрать сердечник трансформатора, посмотреть где образуются токи Фуко и снова собрать сердечник (может где-то что-нибудь не докрасили или заусенец торчит. Оставьте трансформатор на 1 час в рабочем состоянии, затем пощупайте пальцами там где нагрелось или пирометром замерили в каком углу греется) Первичную обмотку надо мотать, чтобы она потребляла 150 - 200 мА в холостую.

Цепь обратной связи от вторичной обмотки трансформатора Т2 к первичной обмотке транформатора Т1 необходима для автоматичекой регулировки нагрузки, чтобы резонанс не срывался. Для этого в цепи нагрузки я разместил токовый трансформатор (первичка 20 витков, вторичка 60 витков и там несколько отводов сделал, далее через резистор, через диодный мост и на трансформатор в линию подающую напряжение к 1-му трансформатору (200 витков / на 60-70 витков)

Схема эта есть во всех древних учебниках по электротехнике. Она работает в плазматронах, в усилителях мощности, она в приемнике гама V работает. Температура обеих трансформаторов в работе около 80°С. Переменный резистор - это керамический резистор 120 Ом и 150 Вт, можно реостат школьный нихромовый с ползунком туда поставить. Он тоже нагревается до 60-80°С, поскольку ток через него проходит хороший => 4 Ампер

Смета для изготовления резонансного трансформатора для отопления дома или дачи

Трансформаторы Тр1 и Тр2 = по 5000 руб каждый причем Тр1 и Тр2 трансформатор можно купить в магазине. Он называется медицинский трансформатор. У него первичная обмотка уже заизолирована магнитным экраном от вторичной. http://omdk.ru/skachat_prays В крайнем случае можно купить китайский сварочный трансформатор

Трансформатор тока Тр3 и подстроечный Тр4 = 500 рублей каждый

Диодный мост Д - 50 рублей

Подстроечный резистор R 150 Вт - 150 рублей

Конденсаторы C - 500 рублей

Резонанс в резонансе от Романова https://youtu.be/fsGsfcP7Ags

https:// www.youtube.com /watch?v=snqgHaTaXVw

Цыкин Г.С. - Трансформаторы низкой частоты Ссылка

Резонансный дроссель Андреева на Ш-образном сердечнике от трансформатора. Как дроссель превратить в генератор электроэнергии.

Александр Андреев рассказывает: Это принцип дросселя и трансформатора в одном лице, но он настолько простой, что никто еще не догадался его использовать. Если взять Ш-образный сердечник 3х фазного трансформатора, то Функциональная схема генератора получения дополнительной энергии будет как на рисунке

Чтобы получить больший реактивный ток в резонансном контуре, ты должен трансформатор превратить в дроссель, то есть разорвать сердечник трансформатора полностью (сделать воздушный зазор).

Всего-навсего нужно первой намотать не входную, как обычно мотают, а выходную обмотку, т.е. ту где забирается энергия.

Вторую мотаем резонансную. При этом диаметр провода должен быть в 3 раза толще, чем силовая

В третий слой мотаем входную обмотку, т.е сетевую.

Это условие для того, чтобы резонанс между обмотками гулял.

Чтобы не было тока в первичной обмотке, то трансформатор превращаем в дроссель. Т.е. Ш-образки с одной стороны собираем, а ламельки (пластиночки) с другой стороны собираем. И там выставляем зазор. Зазор должен быть по мощности трансформатора. Если 1 кВт, то ему 5 А в первичной обмотке. Делаем зазор так, чтобы в первичной обмотке было 5А холостого хода без нагрузки. Этого нужно добиться зазором, который изменяет индуктивность обмоток. Потом, когда делаем резонанс ток падает до "0" и тогда уже будешь постепенно нагрузку подключать, и смотреть разницу входа мощности и выхода мощности и тогда халява получится. Я 1-фазным 30 кВт-ым трансформатором добился соотношения 1:6 (в пересчете на мощность 5А - на входе и 30А - на выходе)

Надо постепенно набирать мощность, чтоб не перепрыгнуть барьер халавщины. Т.е. как и в первом случае (с двумя трансформаторами) резонанс существует до определенной мощности нагрузки (меньше можно, но больше нельзя) Этот барьер нужно подбирать вручную. Можно подключать любую нагрузку (активную, индуктивную, насос, пылесос, телевизор, компьютер...) Когда перебор мощности будет, тогда резонанс уходит, тогда резонанс перестает работать в режиме накачки энергии.

По конструкции

Я взял Ш-образный сердечник от французского инвертора 1978 года. Но искать надо сердечник с минимальным содержанием марганца и никеля, а кремний должен быть в пределах 3%. Тогда халявы много будет. Авторезонанс получится. Трансформатор может самостоятельно заработать. Раньше были такие пластины Ш-образные на которых как-будто кристаллы нарисованы. А сейчас появились мягкие пластины, они не хрупкие, в отличие от старого железа, а мягкие и не ломаются. Вот такое старое железо для трансформатора самое оптимальное.

Если делать на торе, то тор нужно в двух местах распиливать, чтобы потом стяжку сделать. Шлифовать распиленный зазор нужно очень хорошо

На Ш-образном 30кВт-ном трансформаторе у меня получился зазор 6 мм, если 1 кВт-ный - то зазор будет где-то 0,8-1,2 мм. В качестве прокладки картон не подойдет. Магнитострикция его раздолбает. Лучше брать стеклотекстолит

Первой мотается обмотка, которая идет на нагрузку, она и все остальные мотаются на центральном стержне Ш-образного трансформатора. Все обмотки мотаются в одну сторону

Подбор конденсаторов для резонансной обмотки лучше делать магазином конденсаторов. Ничего сложного. Нужно добиться, чтобы железо хорошо рычало, т.е возник ферро-резонанас. Не индукционный эффект между емкость и катушкой, а чтоб железо между ними работало хорошо. Железо должно работать и накачивать энергию, сам по себе резонанс не качает, а железо является стратегическим устройством в этом устройстве.

Напряжение в моей резонансной обмотке было 400 В. Но чем больше - тем лучше. По поводу резонанса - нужно соблюдение реактивных сопротивлений между индуктивностью и емкостью, чтобы они были равны. Это та точка, где и когда возникает резонанс. Можно еще сопротивление добавить последовательно.

Из сети идет 50 Гц, которые возбуждают резонанс. Происходит увеличение реактивной мощности, далее с помощью зазора на обкладке в съемной катушке мы превращаем реактивную мощность в активную.

В этом случае я просто собирался упростить схему и перейти от 2х трансформаторной или 3х трансформаторной схемы с обратной связью к дроссельной связи. Вот и упростил до такого варианта, который еще и работает. 30 кВт-ный работает, но нагрузку я могу снимать только 20 кВт, т.к. все остальное - для накачки. Если я буду больше энергии забирать из сети, то он и отдавать будет больше, но уменьшаться будет халява.

Следует назвать еще одно неприятное явление, связанное с дросселями, - все дроссели при работе на частоте 50 Гц создают гудящий звук разной интенсивности. По уровню производимого шума дроссели делятся на четыре класса: с нормальным, пониженным, очень низким и особо низким уровнем шума (в соответствии с ГОСТ 19680 они маркируются буквами Н, П, С и А).

Шум от сердечника дросселя создается магнитострикцией (изменением формы) пластин сердечника, когда магнитное поле проходит через них. Этот шум также известен, как холостой шум, т.к. он не зависит от нагрузки, подаваемой на дроссель или трансформатор. Шум нагрузки возникает только у трансформаторов, к которым подключается в нагрузка, и он добавляется к холостому шуму (шуму сердечника). Этот шум вызывается электромагнитными силами, связанными с рассеиванием магнитного поля. Источником данного шума являются стенки корпуса, магнитные экраны, и вибрация обмоток. Шумы, вызываемые сердечником и обмотками, находятся, в основном, в полосе частот 100-600 Hz.

Магнитострикция имеет частоту вдвое выше частоты подаваемой нагрузки: при частоте 50 Hz, пластины сердечника вибрируют с частотой 100 раз в секунду. Более того, чем выше плотность магнитного потока, тем выше частота нечетных гармоник. Когда же резонансная частота сердечника совпадает с частотой возбуждения, то уровень шума увеличивается еще больше

Известно, что если через катушку протекает большой ток, то материал сердечника насыщается. Насыщение сердечника дросселя может привести к увеличению потерь в материале сердечника. При насыщении сердечника его магнитная проницаемость уменьшается, что приводит к уменьшению индуктивности катушки.

В нашем случае сердечник катушки индуктивности выполнен с воздушным диэлектрическим зазором на пути магнитного потока. Сердечник с воздушным зазором позволяет:

  • исключить насыщение сердечника,
  • уменьшить в сердечнике потери мощности,
  • увеличить ток в катушке и т.д.
  • Выбор дросселя и Характеристики сердечника. Магнитные материалы сердечника состоят из маленьких магнитных доменов (размерами порядка нескольких молекул). Когда внешнее магнитное поле отсутствует, эти домены ориентированы случайным образом. При появлении внешнего поля домены стремятся выравняться по его силовым линиям. При этом происходит поглощение части энергии поля. Чем сильнее внешнее поле, тем больше доменов полностью выравниваются по нему. Когда все домены окажутся ориентированы по силовым линиям поля, дальнейшее увеличение магнитной индукции не будет влиять на характеристики материала, т.е. будет достигнуто насыщение магнитопровода дросселя. По мере того как напряжённость внешнего магнитного поля начинает снижаться, домены стремятся вернуться в первоначальное (хаотичное) положение. Однако некоторые домены сохраняют упорядоченность, а часть поглощённой энергии, вместо того чтобы вернуться во внешнее поле, преобразуется в тепло. Это свойство называется гистерезисом. Потери на гистерезис являются магнитным эквивалентом диэлектрических потерь. Оба вида потерь происходят из-за взаимодействия электронов материала с внешним полем. http:// issh.ru/ content/ impulsnye-istochniki-pitanija/ vybor-drosselja/ kharakteristiki-serdechnika/ 217/

    Расчет воздушного зазора в дросселе не очень точен, т.к. данные производителей о стальных магнитных сердечниках неточны (обычно погрешность составляет +/- 10%). Программа схемотехнического моделирования Micro-cap позволяет довольно точно рассчитать все параметры катушек индуктивности и магнитные параметры сердечника http://www.kit-e.ru/ articles/ powerel/ 2009_05_82.php

    Влияние воздушного зазора на добротность Q дросселя со стальным сердечником. Если частота напряжения, приложенного к дросселю, не изменяется и с введением воздушного зазора в сердечник амплитуда напряжения увеличивается так, что магнитная индукция поддерживается неизменной, то и потери в сердечнике будут сохраняться такими же. Введение воздушного зазора в сердечник вызывает увеличение магнитного сопротивления сердечника обратнопропорционально m∆ (см формулу 14-8) Следовательно для получения той же магнитной индукции намагничивания ток должен соответственно увеличиваться. Добротность Q дросселя можно определять по уравнению

    Для получения большей величины добротности в сердечник дросселя обычно вводят воздушный зазор, увеличивая тем самым ток Im настолько, чтобы выполнялось равенство 14-12. Введение воздушного зазора уменьшает индуктивность дросселя, то высокое значение Q достигается обычно за счет снижения индуктивности (ссылка)

    Отопление от Андреева на резонансном дросселе с Ш-образным сердечником от трансформатора и лампах ДРЛ

    Если использовать лампу ДРЛ, то выделяемой ей тепло можно отбирать. Схема подключения ламп ДРЛ простая.

    Трансформатор, мощностью 3 кВт имеет: три первичные обмотки, три вторичные обмотки и одну резонансную, а также зазор.

    Каждую лампу ДРЛ в первичных обмотках я соединил последовательно. Потом настраивал каждую лампу в резонанс при помощи конденсаторов.

    На выходе трансформатора у меня три выходных обмотки. К ним я тоже последовательно подсоединил лампы и тоже их настраивал в резонанс при помощи блоков из конденсаторов.

    Потом к резонансной обмотке подключал конденсаторы и последовательно с этими конденсаторами я умудрился еще три лампы подключить. Каждая лампа по 400 Вт.

    Я работал с ртутными лампами ДРЛ, а натриевые лампы НаД трудно зажечь. У ртутной лампы начало зажигания около 100 Вольт.

    От искового промежутка в лампе ДРЛ генерируется более высокая частота, которая моделирует частоту сети 50 Гц. Получаем ВЧ модуляцию при помощи искового промежутка лампы ДРЛ для НЧ сигнала в 50Гц от сети.

    Т.о. три лампы ДРЛ потребляя энергию выдают энергию еще для 6 ламп

    Но подобрать резонанс контура - это одно, а подобрать резонанс металла сердечника - это другое. До этого ещё мало кто дошел. Поэтому когда Тесла демонстрировал свою резонансную разрушающую установку, то когда он подбирал частоту для нее, то на всем проспекте начало разворачиваться землятресение. И тогда Тесла молотком разбил свое устройство. Это пример того, как малым устройством можно разрушить большое здание. В нашем случае нужно заставить метал сердечника вибрировать на частоте резонанса, например как от ударов в колокол.

    Основа для ферромагнитного резонанса из книги Уткина "Основы теслатехники"

    Когда ферромагнитный материал помещается в постоянное магнитное поле (например, подмагничивание сердечника трансформатора постоянным магнитом), то сердечник может поглощать внешнее переменное электромагнитное излучение в направлении, перпендикулярном к направлению постоянного магнитного поля на частоте прецессии доменов, что приведет к ферромагнитному резонансу на этой частоте. Приведенная формулировка является наиболее общей и не отражает всех особенностей поведения доменов. Для жестких ферромагнетиков существует явление магнитной восприимчивости, когда способность материала намагничиваться или размагничиваться зависит от внешних воздействующих факторов (например, ультразвука или электромагнитных высокочастотных колебаний). Это явление широко используется при записи в аналоговых магнитофонах на магнитной пленке и называется "высокочастотное подмагничивание". Магнитная восприимчивость при этом резко возрастает. Т.е, намагнитить материал в условиях высокочастотного подмагничивания проще. Это явление можно также рассматривать как разновидность резонанса и группового поведения доменов.

    Это основа для усиливающего трансформатора Тесла.

    Вопрос: какая польза от ферромагнитного стержня в устройствах свободной энергии?

    Ответ: ферромагнитный стержень может изменять намагниченность своего материала вдоль направления магнитного поля без необходимости использования мощных внешних сил.

    Вопрос: правда ли, что резонансные частоты для ферромагнетиков находятся в диапазоне десятков гигагерц?

    Ответ: да, частота ферромагнитного резонанса зависит от внешнего магнитного поля (высокое поле = высокая частота). Но в ферромагнетиках можно получить резонанс без применения какого-либо внешнего магнитного поля, это так называемый "естественный ферромагнитный резонанс". В этом случае магнитное поле определяется внутренней намагниченностью образца. Здесь частота поглощения находится в широкой полосе, из-за большой вариации в возможных условиях намагничивания внутри, и поэтому вы должны использовать широкую полосу частот, чтобы получить ферромагнитный резонанс для всех условий. Здесь ХОРОШО ПОДХОДИТ ИСКРА на искровом разряднике.


    Обыкновенный трансформатор. Никаких хитрых намоток (бифиляром, встречных...) Обыкновенные намотки, кроме одного - отсутствие влияния вторичной цепи на первичную. Это готовый генератор свободной энергии. Ток, который пошёл на насыщение сердечника получили и во вторичной цепи т.е. с прибавкой в 5 раз. Принцип работы трансформатора как генератора свободной энергии: дать ток на первичную для насыщения сердечника в его нелинейном режиме и отдать ток на нагрузку во вторую четверть периода без влияния ее на первичную цепь трансформатора. В обыкновенном трансформаторе это линейный процесс, т.е. мы получаем ток в первичной цепи путем изменения индуктивности во вторичной подключением нагрузки. В данном трансформаторе этого нет, т.е мы без нагрузки получаем ток для насыщения сердечника. Если мы отдали ток 1 А, то мы его и получим на выходе, но только с коэффициентом трансформации таким - какой нам нужен. Все зависит от размеров окна трансформатора. Наматывает вторичную на 300 В или на 1000 В. На выходе получите напряжение с тем током, который вы подали на насыщение сердечника. В первую четверть периода у нас сердечник получает ток на насыщение, во вторую четверть периода этот ток забирает нагрузка через вторичную обмотку трансформатора.


    Частота в районе 5000 Гц на этой частоте сердечник близок к своему резонансу и первичная перестает видеть вторичку. На видео показываю как замыкаю вторичную, а на блоке питания первички не происходит никаких изменений. Данный эксперимент лучше синусом проводить, а не меандром. Вторичную можно мотать хоть на 1000 Вольт, ток во вторичной будет максимум тока, протекающего в первичной. Т.е. если в первичке 1 А, то во вторичной можно выжать тоже 1 А тока с коэффициентом трансформации, например 5. Далее пробую сделать резонанс в последовательном колебательном контуре и загнать его на частоту сердечника. Получится резонанс в резонансе, как показывал Акула0083

    Коммутационный способ возбуждения параметрического резонанса электрических колебаний и устройство для его осуществления.

    Устройство на схеме относится к автономным источникам электропитания, и может найти применение в промышленности, в бытовой технике и на транспорте. Техническим результатом является упрощение и снижение стоимости изготовления.

    Все источники электропитания по своей сути являются преобразователями различных видов энергии (механической, химической, электромагнитной, ядерной, тепловой, световой) в электрическую энергию и реализуют только эти затратные способы получения электрической энергии.

    Эта электрическая схема позволяет создание на основе параметрического резонанса электрических колебаний автономного источника электропитания (генератора), не сложного по конструкции и не дорогого по стоимости. Под автономностью в подразумевается полная независимость этого источника от воздействия сторонних сил или привлечения других видов энергии. Под параметрическим резонансом понимается явление непрерывного возрастания амплитуд электрических колебаний в колебательном контуре при периодических изменениях одного из его параметров (индуктивности или емкости). Эти колебания происходят без участия внешней электродвижущей силы.

    Резонанный трансформатор Степанова А.А. является разновидностью резонансного усилителя мощности. Работа резонансного усилителя состоит:

    1) усиление в высокодобротном колебательном контуре (резонаторе) при помощи параметра Q (добротность колебательного контура), энергии, получаемой от внешнего источника (сети 220 В или генератора накачки);

    2) снятие усиленной мощности с раскачанного колебательного контура в нагрузку так, чтобы ток в нагрузке не влиял (в идеале) или слабо влиял (в реале) на ток в колебательном контуре (Эффект Демона Тесла).

    Несоблюдение одного из этих пунктов не позволит "извлечь из резонансного контура СЕ". Если выполнение 1 пункта особых проблем не вызывает, то выполнение пункта 2 является задачей технически сложной.

    Существуют приёмы, позволяющие ослабить влияние нагрузки на ток в Резонансном колебательном контуре:

    1) использование ферромагнитного экрана между первичкой и вторичкой трансформатора, как в патенте Тесла № US433702;

    2) использование намотки бифиляром Купера. Индуктивные бифилярки Теслы часто путают с безиндуктивными бифилярками Купера, где ток в 2х соседних витках течёт в разных направлениях (и которые, по сути, являются статическими усилителями мощности и рождают ряд аномалий, в том числе и антигравитационные эффекты) Видео по ссылке В случае односторонней магнитной индукции, подключение нагрузки к вторичной катушке не влияет на ток потребления первичной катушки.

    Трансформатор, доработанный для решения этой задачи, изображен на фиг.1 с различными типами магнитопроводов: a - стержневой, b - броневой, с - на ферритовых чашках. Все проводники первичной обмотки 1 находятся только с внешней стороны магнитопровода 2. Его участок внутри вторичной обмотки 3 всегда замкнут огибающей магнитной цепью.

    В штатном режиме при подаче переменного напряжения на первичную обмотку 1 весь магнитопровод 2 намагничивается вдоль ее оси. Примерно половина потока магнитной индукции проходит через вторичную обмотку 3, вызывая на ней выходное напряжение. При обратном включении переменное напряжение подается на обмотку 3. Внутри нее возникает магнитное поле, которое замыкается огибающей ветвью магнитопровода 2. В итоге, изменение суммарного потока магнитной индукции через обмотку 1, опоясывающую весь магнитопровод, определяется только слабым рассеянием за его пределы.

    5) использование "ферроконцентраторов" - магнитопроводов с переменным сечением, в которых магнитный поток, создаваемый первичкой, при прохождении по магнитопроводу, сужается (концентрируется) перед прохождением внутри вторички;

    6) множество других технических решений, например патент Степанова А.А.(N° 2418333) или приёмы, описанные у Уткина в "Основах Теслатехники". Можно так же посмотреть описание трансформатора Е.М.Ефимова (http:// www.sciteclibrary.ru/ rus/ catalog/ pages/ 11197.html, http:// www.sciteclibrary.ru/ rus/ catalog/ pages/ 11518.html), статью А.Ю. Далечина "Трансформатор реактивной энергии" или "Резонансный усилитель мощности тока промышленной частоты" Громова Н.Н.

    7) Однонаправленный трансформатор видео

    Эти изобретения сводятся к решению одной задачи - "сделать, чтобы энергия из первички во вторичку передавалась полностью, а обратно не передавалась вообще" - обеспечить режим одностороннего перетекания энергии.

    Решение этой задачи - ключ к построению резонансных сверхединичных СЕ-трансформаторов.

    Видимо Степанов придумал ещё один способ снятия энергии с резонансного колебательного контура - на этот раз с помощью той самой странной цепи, состоящей из трансформатора тока и диодов. .

    Колебательный контур в режиме резонанса токов, является усилителем мощности.

    Большие токи, циркулирующие в контуре, возникают за счет мощного импульса тока от генератора в момент включения, когда заряжается конденсатор. При значительном отборе мощности от контура эти токи «расходуются», и генератору вновь приходится отдавать значительный ток подзарядки

    Колебательный контур с низкой добротностью и катушкой небольшой индуктивности слишком плохо "накачивается" энергией (запасает мало энергии), что понижает КПД системы. Также катушка с маленькой индуктивностью и на низких частотах обладает малым индуктивным сопротивлением, что может привести к "короткому замыканию" генератора по катушке, и вывести генератор из строя.

    Добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью плохо «запасает» энергию. Для повышения добротности колебательного контура используют несколько путей:

    Повышение рабочей частоты: из формул видно, что выходная мощность прямо пропорциональна частоте колебаний в цепи (количеству импульсов в секунду) Если вдвое увеличить частоту импульсов, то выходная мощность увеличивается вдвое

    По возможности увеличить L и уменьшить C. Если увеличить L с помощью увеличения витков катушки или увеличения длины провода нельзя, используют ферромагнитные сердечники или ферромагнитные вставки в катушку; катушка обклеивается пластинками из ферромагнитного материала и т.п.

    Рассмотрите временные характеристики последовательного LC контура. В резонансе ток отстает от напряжения на 90°. Токовым трансформатором я использую токовую состовляющую, таким образом я не вношу изменения в контур, даже при полной нагрузке токового трансформатора. При изменении нагрузки, происходит компенсация индуктивностей (другого слова не подобрал) контур сам себя подстраивает не давая уйти с резонансной частоты.

    К примеру, катушка на воздухе 6 витков медной трубки 6 мм2, диаметр каркаса 100мм, и ёмкость в 3 мкф имеет резонансную частоту примерно 60 кГц. На этом контуре можно разогнать до 20 кВт реактива. Соответственно токовый трансформатор должен иметь габаритную мощность не менее 20 кВт. Можно применять что угодно. Кольцо - хорошо, но при таких мощностях больше вероятность ухода сердечника в насыщение, поэтому необходимо вводить зазор в сердечник , а это проще всего с ферритами от ТВСа. На этой частоте один сердечник способен рассеять около 500 Вт, значит необходимо 20000\500 не менее 40 сердечников.

    Важное условие - создать резонанс в последовательном LC контуре. Процессы при таком резонансе хорошо описаны. Важный элемент - это токовый трансформатор. Его индуктивность должна быть не более 1/10 индуктивности контура. Если больше, резонанс будет срываться. Следует также учесть коэффициенты трансформации, согласующего и токового трансформаторов. Первый рассчитывается исходя из импедансов (полных сопротивлений) генератора и колебательного контура. Второй зависит от напряжения развиваемого в контуре. На предыдущем примере в контуре 6 витков развилось напряжение в 300 вольт. Получается на виток 50 вольт. Токовый транс использует 0,5 витков, значит в его первичке будет 25 вольт, следовательно вторичка должна содержать 10 витков, для достижения напряжения в 250 вольт на выходе.

    Все рассчитывается по классическим схемам. Как вы будете возбуждать резонансный контур неважно. Важная часть - это согласующий трансформатор, колебательный контур, и токовый трансформатор для съема реактивной энергии.

    Если вы хотите данный эффект на трансформаторе Тесла (далее ТТ) реализовать. Вам необходимо знать и иметь опыт по построению ВЧ цепей. В ТТ при 1/4 волновом резонансе, так же происходит разделение тока от напряжения на 90°. Сверху напряжение, снизу ток. Если проведете аналогию с представленной схемой и ТТ, увидите сходство, как накачка так и съем происходит на стороне возникновения токовой составляющей. Аналогично работает и устройство Смита. Поэтому не рекомендую начинать с ТТ или Смита будучи не опытным. А данное устройство можно буквально на коленке собрать, при этом имея только один тестер. Как правильно в одном из постов заметила lazj "Капанадзе осциллограф из-за угла видел."

    Таким образом происходит модуляция несущей. А такое решение - транзисторы ведь с однополярным током могут работать. Если на них подать не выпрямленное, то пройдет только одна полуволна.

    модуляция нужна для того, чтобы потом не мучиться с преобразованием в 50 Гц стандарт.

    Для получения на выходе синуса 50 гц. Без неё потом можно будет питать только активную нагрузку (лампочки накаливания, тены...). Двигатель, или трансформатор на 50 гц работать не будут, без такой модуляции.

    Задающий генератор я обозначил прямоугольником. Он стабильно выдает частоту, на которой резонирует LC контур. Пульсирующее изменение напряжения (синус) подается только на выходные ключи. Резонанс колебательного контура от этого не срывается, просто в каждый момент времени в контуре крутиться больше или меньше энергии, в такт синуса. Это как если качели толкать, с большей или меньшей силой, резонанс качелей не меняется, меняется только энергия.

    Резонанс можно сорвать только нагрузив его непосредственно, т к меняются параметры контура. В данной схеме нагрузка не влияет на параметры контура, в ней происходит автоподстройка. Нагружая токовый трансформатор, с одной стороны меняются параметры контура, а с другой стороны меняется магнитная проницаемость сердечника трансформатора, уменшая его индуктивность. Таким образом для резонанского контура нагрузка "невидна". И резонансный контур как совершал свободные колебания так и продолжает совершать. Меняя напряжение питания ключей (модуляция), меняется только амлитуда свободных колебаний и все. Если есть осциллограф и генератор, проведите эксперимент, с генератора подайте на контур частоту резонанса контура, затем меняйте амплитуду входного сигнала. И увидете что нет никакого срыва.

    Да, согласующий трансформатор и трансформатор тока построены на ферритах, резонансный контур воздушный. Чем больше в нем витков тем выше добротность, с одной стороны. А с другой выше сопротивление, что снижает конечную мощность, потому как основная мощность уходит на нагрев контура. Поэтому следует искать компромис. По поводу добротности. Даже имея добротность 10 при 100 Вт входной мощности 1000 Вт будет реактива. Из них 900 Вт можно снять. Это при идиальных условиях. В реале 0,6-0,7 от реактива.

    Но это все мелочи, по сравнению с тем, что не надо закапывать радиатор отопления в землю и париться с заземлением! А то Капанадзе пришлось даже на острове разориться на устройство заземления! А оно оказывается и вовсе не нада! Реактивная энергия прет и без рабочего заземления. Это бесспорно. А вот со сьемным трансформатором тока - придется повозится... Не так все просто. Обратное влияние имеется. Степанов как-то это решил, в патенте у него там диоды для этой цели нарисованы. Хотя наличие диодов у Степанова каждый трактует по-своему.

    Степанов в Питере запитывал станки по следующей схеме. Его схема была проста, но мало понимаема

    Трансформатор с короткозамкнутым витком генерирует мощное переменное магнитное поле. Берём феромагнитный стержень с как можно большей проницаемостью, лучше трансформаторное железо, пермаллой, и т.д. Для более яркого проявления эффекта мотаем на нем первичку с подобранным активным максимальным сопротивлением так, чтобы она не сильно нагревалась при питании от генератора в режиме полного КОРОТКОГО ЗАМЫКАНИЯ. После намотки первички делаем вторичку как обычно, по всей поверхности первички, только наглухо замкнутую.

    Можно сделать замкнутый виток в форме трубки длиной с первичку. При включении трансформатора такой короткозамкнутый трансформатор генерирует мощное переменное магнитное поле. При этом сколько бы мы не приставляли по торцам дополнительных сердечников с замкнутыми обмотками - потребление трансформатора не увеличивается. Зато с каждого приставленного сердечника с обмоткой мы имеем нехилую ЭДС. Вторичку основного трансформатора лучше использовать при максимальной нагрузке, чем больше нагрузка, тем больше поле, чем больше поле, тем больше ЭДС на дополнительном сердечнике.

    СКРЫТЫЕ ПОДРОБНОСТИ РАБОТЫ ТРАНСФОРМАТОРА С КОРОТКОЗАМНУТЫМ ВИТКОМ.

    Вторичной обмоткой магнитное поле вообще не индуцируется. В ней ток как бы вторичен и выполняет роль \СМАЗКИ\ для тока в первичке. Чем лучше смазка, тем больше ток в первичке, но максимум тока упирается в активное сопротивление первички. Отсюда получается, что магнитное поле МП можно брать от короткозамкнутого КЗ трансформатора для его дальнейшего усиления МП- размножения МП- дублирования МП феромагнетиками.

    При поднесении к основному сердечнику с измеряемой обмоткой бокового дополнительного сердечника индуктивность растёт, при поднесении дополнительного сердечника с КЗ обмоткой индуктивность падает. Далее, если индуктивности на основном сердечнике падать уже некуда (близко к активному сопротивлению), то поднесение дополнительного сердечника с корокозамкнутой КЗ обмоткой, никак не влияет на ток в первичке, но поле-то есть!

    Трансформатор с короткозамкнутым КЗ витком.Опыт

    Отсюда есть ток в дополнительной обмотке. Так вытаскивается магнитная энергия, и часть ее конвертируется в ток. Это всё очень приближенно, т.е. мы сначала натыкаемся на убытки К.З. в трансформаторе и на этом останавливаемся, не обращая внимания на возросшее магнитное поле согласно току в первичке, а поле - это то, что нам надо.

    Объяснение. Берём обычный стержневой электромагнит, запитываем положенным ему напряжением, видим плавное нарастание тока и магнитного поля, в конце концов ток постоянен и магнитное поле тоже. Теперь первичку окружаем сплошным проводящим экраном, подключаем снова, видим нарастание тока и магнитного поля до тех же значений, только раз в 10-100 быстрее. Можно представить во сколько раз можно повысить и частоту управления таким магнитом. Также можно сравнить крутизну фронта магнитного поля в этих вариантах, а заодно посчитать затраченную энергию источника для достижения предельного значения магнитного поля. Так что думаю стоит забыть о магнитном поле при К.З. вторички-экрана, его на самом деле нет. Ток во вторичке - это чисто компенсатор, пассивный процесс. Ключевой момент в транс-генераторе это трансформация тока в магнитное поле, усиленное многократно свойствами сердечника..

    Трансформатор с короткозамкнутым витком еще и для отопления. Все знают об импульсе обратной индукции: если мы хорошую индуктивность отключаем от источника, то получим выброс напряжения и соответственно тока. Что на это говорит сердечник - а ничего! Магнитное поле все равно стремительно убывает и надо бы вводить понятие активного и пассивного тока. Пассивный ток не образует своего магнитного поля, если конечно не выводить линии тока относительно магнитного поля сердечника. В противном случае у нас бы получился \вечный электромагнит\,. Возьмем конструктив, \как описано свидетелем конструкции МЕЛЬНИЧЕНКО\. Стержень, а на стержне по торцам две первички, сверху на них алюминиевые кольца (замкнутые полностью или даже с запасом закрывающие обмотку) - так сказать компенсаторы. Съёмная обмотка посредине. Остаётся проверить: был ли стержень сплошным или составным из трёх частей, под первичкой и под съёмной обмоткой? Боковые первички с замкнутыми экранами будут генераторами магнитного поля, а центральная часть сердечника, или отдельный сердечник генерирует своё магнитное поле, которое съёмной катушкой конвертируется в ток. Две катушки по торцам - видимо для создания более равномерного поля в центральной части. Можно сделать и так: Две катушки по торцам - съемные, и посередине экранированная, генераторная, какая из этих конструкций лучше, покажет опыт. Никаких высокоомных экранов, никаких конденсаторов. Ток в экране является реверсом для тока в первичке, а заодно и компенсатором против изменения поля в генерирующих стержнях (от нагрузки в съёмных). Да, съёмная обмотка обычная индуктивная. ТРАНС_ГЕНЕРАТОР не является вечным двигателем, он распределяет энергию среды, но собирает её очень эффективно с помощью поля, и выдает в виде тока - ток всё обратно переводит в пространство, в итоге мы никогда не нарушаем баланс энергий в замкнутом объеме, а пространство специально устроено так, чтобы всё сгладить и равномерно распределить. Самая простая конструкция: стержень-первичка-экран-вторичка _ сколько хочешь. Токи в экране пассивные, снимай не хочу. Так же будут работать типовые трансформаторы, снимаем вторичку, ставим экран, снова вторичка, но побольше, до заполнения окна магнитопровода. Получаем трансформатор КУЛДОШИНА. Но если окно маленькое, может даже не получиться оправдать все затраты. ЧАСТОТУ также надо подбирать экспериментально для максимального КПД. От частоты сильно зависит эффективность. Повысим частоту - сохраним красивое отношение вольт на виток. Можно повысить скважность. Если генератор просаживается, почему просаживается - нет мощности. Надо рассчитывать мощность генератора.

    чтобы не париться включи в розетку. Там напряжение хорошо держится. Потери само собой, рассчитывайте силу тока первички, так чтобы зря энергия не тратилась. То есть, чтобы сердечник насыщался на максимальном токе. А вторичек можно намотать, от жадности сколько хочешь. Ток ведь не увеличивается в первичке. ИМПУЛЬС тока проходит в первичке. При этом она не индуктивная, то есть поле создаётся быстро. А есть поле - есть ЭДС. А так как нет индуктивности, то частоту смело повышаем в 10 раз.

    ЭКРАН делает трансформатор почти полностью не индуктивным, в этом ВСЯ СОЛЬ.

    Эффект найден на стержневом электромагните. Он был запитан от разных источников. Даже импульсами с кондёров. Магнитное поле нарастает мгновенно. Т.е. со вторичной обмотки надо собрать как можно больше энергии.

    В трансформаторе с КЗ экраном практически нет ни одной индуктивной обмотки. Поле от сердечника свободно проникает через любую толщу вторичной съёмной обмотки.

    Виртуально уберите из конструкции трансформатора первичку и экран....

    Это можно сделать, так как на экран и первичку никакие манипуляции со вторичкой в смысле нагрузки никак не влияют. Вы получите стержень из которого идёт генерация переменного магнитного поля, которое никак не остановить. Можете намотать кучу вторичного толстого провода и во всей массе проводника будет ток. Часть его пойдет на восстановление энергии источника, а остальное - ваше. Только опыт покажет вам, что поле, созданное первичкой и стержнем, не остановить никаким экраном, да хоть засунуть всё в проводящий цилиндр вместе с источником и генератором - поле спокойно выходит, и оно будет наводить токи в обмотках сверху цилиндров.

    ЭКРАН ДАЕТ ВЫИГРЫШ В ТОМ, ЧТО СВОДИТ ИНДУКТИВНОСТЬ ВСЕХ ОБМОТОК НА НЕТ, ДАЁТ ВОЗМОЖНОСТЬ РАБОТАТЬ НА ВЫСОКОЙ ЧАСТОТЕ С ТОЙ ЖЕ АМПЛИТУДОЙ ПОЛЯ. А ЭДС ЗАВИСИТ ОТ СКОРОСТИ ИЗМЕНЕНИЯ И СИЛЫ ПЕРЕМЕННОГО МАГНИТНОГО ПОЛЯ.

    Пока нет экрана, никакой трансформатор никогда не заставит феромагнетик отдавать свою энергию по простой причине: энергию отдаёт первичка, а вот когда первичка уже не может отдавать больше своей нормы, только тогда начнётся откачка внутренней энергии ферромагнетика.

    Экран - нулевая точка. Нет экрана - эту точку никогда не перейти. Во вторичке хоть какого объёма все электроны просто плывут как бы по течению магнитного поля. Они плывут пасивно, поля не обгоняют, индуктивности нигде нет. Этот ток называется холодным током . Сердечник будет охлаждаться, если со вторички забирать больше энергии, чем даёт первичка, так же будет забираться энергия всего, что ближе к сердечнику: провода, воздух.

    Вторичка может быть любого объема. ВЕЗДЕ БУДЕΤ ТОК!

    Трансформатор Соколовского МЕ-8_2 Использование обратной ЭДС в трансформаторе с КЗ витком https://youtu.be/HH8VvFeu2lQ Обратная ЭДС катушки индуктивности от Сергей Дейна https://youtu.be/i4wfoZMWcLw

    Эта статья была подготовлена на основе материалов, присланных Александром Германовичем Семеновым , директором научно-производственного российско-молдавского предприятия "Элкон" , г.Кишинев. В подготовке статьи также участвовал главный инженер предприятия Александр Анатольевич Пенин . Александр Германович пишет:
    "Специализируясь в области источников питания, нам удалось создать способ построения резонансных преобразователей с глубокой регулировкой выходных параметров, отличающийся от известных до сих пор. На данный способ получен международный патент. Наиболее полно преимущества способа проявляются при построении мощных - от 500 и до десятков киловатт - источников. Преобразователь не требует схем быстрой защиты от КЗ на выходе так как в нем практически не возникает режима разрыва тока ключей в любом режиме. Также устранена возможность возникновения сквозных токов. Поскольку физически (без обратных связей) преобразователь является источником тока, то появилась возможность перенести конденсатор фильтра питающего сетевого выпрямителя на выход преобразователя, что позволило получить коэффициент мощности на уровне 0.92-0.96 в зависимости от нагрузки. Частота резонансного контура не меняется, а это дает возможность эффективной фильтрации излучений преобразователя по всем направлениям. Практическая реализация осуществлена в виде источников тока для электрохимзащиты - станций катодной защиты марки "Элкон". Мощность 600, 1500, 3000 и 5000 ватт. КПД в номинальном режиме на уровне 0.93-095. СКЗ прошли сертификационные испытания в НПО "ВЗЛЕТ". Идет медленное, тягучее внедрение. Все это подтверждает жизненность идеи. Однако, как мне кажется, для достижения коммерческого успеха необходима популяризация идеи с целью привлечения к ней внимания".
    Что ж, помочь коллегам всегда приятно, тем более, что идея, заложенная в основу продукции "Элкон", отличается новизной.

    В настоящее время приборы и устройства силовой электроники, разрабатываемые для профессионального применения, активно оптимизируют по таким критериям, как масса, габариты, коэффициент полезного действия, надежность, стоимость. Эти требования неуклонно ужесточаются, то есть заказчик хочет иметь прибор с минимальными габаритами и массой, и при этом - с высоким КПД, высокой надежностью и низкой стоимостью .

    С целью улучшения потребительских свойств изделий приходится прибегать к известным мерам: повышать рабочие частоты преобразования, уменьшать потери мощности на силовых элементах, снижать или исключать динамические перегрузки в силовой части схемы. Зачастую эти меры противоречат друг другу, и для достижения определенных результатов разработчик идет на некоторый, порой весьма непростой, компромисс . Поэтому дальнейшая оптимизация параметров преобразовательной техники возможна только с помощью перехода на новые принципы построения этих устройств.

    Чтобы понять, принципиально чем отличается способ регулирования напряжения, предлагаемый "Элкон", какая новизна заключена в нем, вначале поговорим о традиционном построении регуляторов. Преобразователи постоянного напряжения в постоянное (DC/DC преобразователи), являющиеся значительным по объему классом устройств из области силовой электроники, традиционно строятся по следующей схеме: первичное звено осуществляет преобразование постоянного напряжения в переменной высокой частоты; вторичное звено осуществляет преобразование переменного напряжения в постоянное. В составе преобразователя обычно имеется регулятор, управляющий величиной выходного постоянного напряжения или поддерживающий его на требуемом уровне.

    Высокочастотное преобразование может осуществляться при помощи различных схем, но если говорить о двухтактных схемах, то здесь можно назвать два типа: схемы с прямоугольной формой тока силовых ключей и резонансные с синусоидальной (или квазисинусоидальной) формой тока ключей.

    Эффективность работы преобразователей в значительной степени определяется динамическими коммутационными потерями на силовых элементах при коммутации рабочих значений токов. Опыт разработки преобразователей мощностью более 100 Вт показывает, что снизить эти потери удается в основном за счет использования коммутационных элементов (транзисторов) с низким временем переключения и за счет формирования правильной траектории их переключения. Существующая на сегодняшний момент элементная база, конечно, обладает достаточно высокими динамическими характеристиками, но, тем не менее, они еще далеки от идеальных. Поэтому часто технологические ограничения приводят к значительным перенапряжениям на элементах силовой схемы, а значит, снижается общая надежность преобразователя .

    Формирование правильной траектории переключения - немаловажная задача, которая также в значительной степени может снизить коммутационные перенапряжения. Этот метод обеспечивает так называемую "мягкую" коммутацию путем перераспределения энергии между собственно силовой частью коммутационного элемента (транзисторного ключа) и формирующим элементом. Уменьшение потерь происходит за счет возврата накопленной ими энергии . Напомним, что известными представителями формирующих элементов являются всевозможные RCD-цепи, гасящие резисторы, снабберы и т.д.

    Практика разработки реальных преобразователей показывает, что при создании устройства с номинальной мощностью сотни-тысячи ватт приходится буквально "даться" за каждый ватт эффективной мощности, в максимальной степени снижать тепловые потери, снижающие общий КПД преобразователя.

    Еще одна проблема относится к необходимости наличия быстродействующей защиты от короткого замыкания (КЗ) в нагрузке. Проблема состоит, главным образом, в том, что слишком быстродействующая защита становится слишком подверженной ложным срабатываниям, отключая преобразователь даже тогда, когда никакой опасности для него не возникает. Слишком медленная защита устойчива к ложным срабатываниям, но едва ли защитит прибор. Приходится тратить немало усилий на проектирование оптимальной защиты.

    В связи с вышеизложенным, классический высокочастотный преобразователь оказывается не совсем отвечающим современным требованиям, предъявляемым к силовой преобразовательной технике. Возникает необходимость поиска новых способов построения этих приборов.

    В последнее время инженеры обратили внимание на резонансные преобразователи, как на устройства с большими потенциальными возможностями. В резонансных преобразователях принципиально меньше динамические потери, они создают гораздо меньше помех, поскольку переключение происходит не прямыми фронтами, богатыми гармониками, а с гладкой формой сигнала, близкой к синусоидальной , . Резонансные преобразователи более надежны, им не требуется быстродействующая защита от короткого замыкания (КЗ) в нагрузке, потому как ограничение тока КЗ происходит естественным образом. Правда, из-за синусоидальной формы тока несколько возрастают статические потери в силовых элементах, но поскольку резонансные преобразователи не столь требовательны к динамике переключения силовых элементов, могут быть использованы IGBT транзисторы standard-класса, у которых напряжение насыщения меньше, чем у warp-speed IGBT-транзисторов. Можно вспомнить и о СИТ-транзисторах и даже о биполярных, хотя, на взгляд автора сайта, о последних лучше в данном контексте не вспоминать.

    С точки зрения построения силовой схемы резонансные преобразователи получаются простыми и надежными. Однако до сих пор они не смогли вытеснить обычные полумостовые и мостовые преобразователи из-за принципиальных проблем с регулированием выходного напряжения . Обычные преобразователи использую принцип регулирования на основе широтно-импульсной модуляции (ШИМ), и здесь не возникает никаких сложностей. В резонансных же преобразователях использование ШИМ и других специальных методов (например, частотного регулирования за счет изменения частоты коммутации) приводит к увеличению динамических потерь, которые в некоторых случаях становятся соразмеримыми или даже превышающими потери в классических преобразователях. Использование же формирующих цепей оправдывает себя в ограниченном диапазоне частот и при очень небольшой глубине регулирования. Встречается несколько более эффективный способ, основанный на значительном уменьшении частоты коммутации, приводящей к уменьшению среднего тока нагрузки, а значит, и выходной мощности. Но этот способ частотного регулирования также можно назвать компромиссным, а значит, недостаточно удовлетворяющим современным требованиям .

    И все же резонансные преобразователи оказались настолько заманчивыми, что было придумано еще несколько способов повысить их КПД и глубину регулирования. Увы, и эти идеи показали себя недостаточно эффективными. Использование дополнительного импульсного регулятора, устанавливаемого на выходе, приводит к необходимости использования еще одного звена преобразования, а значит, снижает КПД . Конструкция с переключением витков трансформатора опять-таки значительно усложняет преобразователь, повышает его стоимость и делает невозможным использование в областях широкого потребления.

    Из сказанного можно сделать вывод, что основная проблема, мешающая широкому распространению резонансных преобразователей, кроется в создании эффективного способа глубокого регулирования выходного напряжения. Если эта проблема будет решена, удастся значительно улучшить характеристики устройств силовой электроники, их дальнейшему распространению в уже освоенные и новые области применения преобразовательной техники.

    Специалистам предприятия "Элкон" удалось в значительной степени продвинуться в исследованиях способа регулирования путем уменьшения частоты коммутации. Именно данный способ был взят за основу, так как в нем сохраняется основное достоинство резонансной схемы - коммутационные переключения при нулевом токе. Изучение процессов, происходящих в обычном резонансном преобразователе, позволило уточнить его схему и найти более эффективный механизм регулирования в широком диапазоне нагрузок и приемлемом диапазоне частот, что составило основу международного патента . Помимо этого удалось достигнуть одинаковой амплитуды токов силовых транзисторов как в режиме номинальной нагрузки, так и в режиме КЗ, отсутствия сквозных токов через силовые транзисторы даже на максимальной частоте коммутации, "мягкой" нагрузочной характеристики (гораздо лучше, чем у обычного резонансного преобразователя).

    Полная схема модернизированного резонансного преобразователя является предметом "ноу-хау" предприятия "Элкон", однако, чтобы читателю было понятно, в чем заключается усовершенствование, далее приводятся сведения из патента "Способ регулируемого резонансного преобразования постоянного напряжения".

    Изобретение предназначается для реализации мощных, дешевых и эффективных регулируемых высокочастотных транзисторных резонансных преобразователей напряжения различного применения. Это могут быть сварочные преобразователи, установки индукционного нагрева, радиопередающие устройства и другое.

    Имеется прототип регулируемого резонансного преобразователя напряжения, опубликованный в . В прототипе: создается колебание с собственным периодом То и периодом коммутации силовых ключей Тк; используется емкостной и индуктивный накопители энергии с потреблением от источника постоянного напряжения и передачи части энергии в нагрузку с выпрямителем; регулирование напряжения осуществляется за счет расстройки от резонанса с периодом собственных колебаний То частоты коммутации ключей Тк, близкой к То.

    Как уже было сказано выше, расстройка приводит к значительному увеличению динамических потерь и в целом снижает надежность преобразователя, так как при расстройке утрачивается главное достоинство резонансного преобразователя - коммутация при нулевых токах. Все это приводит к тому, что способ целесообразно использовать только в маломощных преобразователях.

    Имеется более близкий прототип, опубликованный в работе . В данном прототипе также создается колебание с собственным периодом То и периодом коммутации ключей Тк, но Тк>То; используется емкостной и индуктивный накопители энергии с потреблением от источника постоянного напряжения и передаче части энергии в нагрузку с выпрямителем; выходное напряжения регулируется за счет изменения периода коммутации Тк. Однако здесь избыток энергии емкостного накопителя возвращается обратно в источник питания за счет разряда емкостного накопителя через нагрузку, а ограничение фронта импульсов тока силовых ключей осуществляется с помощью дополнительных индуктивных накопителей. Этот способ сохраняет главное достоинство резонансного преобразователя - возможность коммутации силовых ключей при нулевых токах.

    К сожалению, этот прототип также обладает рядом недостатков. Одним из принципиальных недостатков является увеличение тока ключей в случае возникновения перегрузок или КЗ в цепи нагрузки при номинальной или максимальной частоте. Так как в этом случае индуктивные элементы запасают большое количество энергии, она не успевает полностью вернуться в источник питания за небольшой период (Tк-То)/2. Еще один недостаток - принудительное обрывание тока через ключи несмотря на то, что фронт коммутации задан. Здесь возникает необходимость наличия сложной защиты ключевых элементов, сужает общий диапазон регулирования напряжения, что ведет к сужению области применения преобразователя.

    Устройство, с помощью которого можно реализовать данный способ, представляет собой обычный резонансный полумостовой преобразователь с емкостным делителем напряжения (емкостным накопителем) и индуктивным накопителем, включенных с нагрузкой между стойкой транзисторов полумоста и средним выводом емкостного делителя. Дополнительные индуктивные накопители включаются в ветви или в контура каждого ключевого элемента.

    Устройство, предложенное предприятием "Элкон", решает задачу обеспечения большого диапазона регулирования напряжения нагрузки и, таким образом, расширяет область его применения. В новом способе можно найти некоторые аналогии с прототипами и : создаются колебания с собственным периодом То и периодом коммутации Тк, причем Тк>То, также используются емкостной и индуктивный накопитель с потреблением от источника постоянного напряжения и передаче части энергии в нагрузку с выпрямителем, также осуществляется возврат избытка энергии емкостного накопителя обратно в источник, регулировка напряжения осуществляется за счет изменения Тк. Новизна способа состоит в том, что одновременно с первыми колебаниями создаются вторые колебания с собственным периодом То и периодом коммутации Тк, с использованием того же емкостного накопителя и второго индуктивного накопителя с потреблением энергии от емкостного накопителя и передачей энергии в нагрузку с выпрямителем.

    Главной особенностью предложенного способа является одновременное протекание токов первого и второго колебаний через ключевые элементы таким образом, что суммарный ток через них не терпит разрыва, что и позволяет возвращать энергию индуктивных накопителей на максимальной частоте даже при возникновении КЗ. При этом амплитуда тока ключевых элементов остается на уровне номинальных значений. Этот способ "работает" во всем диапазоне периодов коммутации Тк, что успешно решает проблему резонансного преобразователя.

    Устройство, показанное на рисунке 1 , содержит управляемый задающий генератор импульсов (1), выходы которого соединены с затворами транзисторов (2) и (3), образующими полумостовую стойку (плечо полумоста). Общая точка соединения транзисторов (2) и (3) через емкостной накопитель (резонансный конденсатор), обозначенный (5), подключена к одному из выводов трансформаторно-выпрямительной нагрузки (6). Индуктивные накопители (резонансные дроссели), обозначенные (7) и (8), соединены последовательно. Их общая точка соединения подключена к другому выводу нагрузки (6). Источник питающего напряжения (9) соединен с нижним выводов дросселя (7) и эмиттером транзистора (2). Верхний вывод дросселя (8) соединен с коллектором транзистора (3).

    На рисунке 2 показаны графики, отражающие работу этого резонансного преобразователя. Задающий генератор (1) вырабатывает парафазные управляющие импульсы, показанные на рис.2 а-б , длительностью То/2 и регулируемым периодом коммутации Тк, которые по очереди открывают транзисторы (2) и (3). В установившемся режиме работы преобразователя, в момент времени t1 подается импульс управления на транзистор (2), при этом через него начинает протекать синусоидальный импульс тока I1, показанный на рис.2 в , - так называемые "первые колебания". Одновременно с ним через антипараллельный (оппозитный) диод (4) транзистора (3) продолжает протекать ток I2 - "вторые колебания".


    рисунок 3
    Первый такт работы схемы

    На рисунке 3 показан первый такт работы схемы, отражающий ее поведение в промежутке (t1…t2). Резонансный конденсатор (5) с напряжением U5, график которого приведен на рис.2 г ., перезаряжается через трансформаторно-выпрямительную нагрузку (6), включающую трансформатор (6.1), выпрямитель (6.2) и собственно нагрузку (6.3). Первый резонансный дроссель (7) накапливает энергию. В то же время резонансный конденсатор (5) разряжается через второй резонансный дроссель (8) с напряжением U8, график которого приведен на рис.2 д . Дроссель (8) накапливает энергию в соответствии с полярностью, указанной на графике.


    рисунок 4
    Второй такт работы схемы

    На рисунке 4 показан второй такт работы схемы, отражающий ее поведение в промежутке (t2…t3). Резонансный конденсатор (5) продолжает перезаряжаться через трансформаторно-выпрямительную нагрузку (6) и первый резонансный дроссель (7). Также резонансный конденсатор (5) перезаряжается через второй резонансный дроссель (8), который уже отдает энергию в соответствии с указанной полярностью.


    рисунок 5
    Третий такт работы схемы

    На рисунке 5 показан третий такт работы схемы, отражающий ее поведение в промежутке (t3…t4). Резонансный конденсатор (5) продолжает заряжаться через трансформаторно-выпрямительную нагрузку (6) и первый резонансный дроссель (7) с напряжением U7, показанным на графике рис.2 е . В то же время резонансный конденсатор (5) уже заряжается от второго резонансного дросселя (8), который продолжает отдавать энергию в соответствии с указанной полярностью.


    рисунок 6
    Четвертый такт работы схемы

    На рисунке 6 показан четвертый такт работы схемы, отражающий ее поведение в промежутке (t4…t5). Резонансный конденсатор (5) продолжает заряжаться через трансформаторно-выпрямительную нагрузку (6) и первый резонансный дроссель (7), который уже отдает энергию в соответствии с указанной на рисунке полярностью. В то же время резонансный конденсатор (5) продолжает заряжаться от второго резонансного дросселя (8).

    На рисунке 8 показан шестой такт работы схемы, отражающий ее поведение в промежутке (t6…t7). Резонансный конденсатор (5) уже отдает энергию через трансформаторно-выпрямительную нагрузку (6) и первый резонансный дроссель (7) в источник питания (9). Ток I1 при этом меняет свое направление.


    рисунок 9
    Седьмой такт работы схемы

    На рисунке 9 показан седьмой такт работы схемы, отражающий ее поведение в промежутке (t7…t8). Импульс управления подается на транзистор (3), при этом начинает протекать синусоидальный импульс тока I2 согласно рис.2 в , через этот транзистор ("второе колебание"). Также продолжает протекать ток I1 через антипараллельный диод (10) транзистора (2) - "первое колебание". Резонансный конденсатор (5) отдает энергию через трансформаторно-выпрямительную нагрузку (6) и первый резонансный дроссель (7) - в источник питающего напряжения (9) и во второй резонансный дроссель (8).

    На рисунке 11 показан девятый такт работы схемы, отражающий ее поведение в промежутке (t9…t10). Все накопители отдают свою энергию.

    На рисунке 13 показан заключительный такт работы схемы, отражающий ее поведение в промежутке (t11…t1). Идет разряд резонансного конденсатора (5), далее процессы повторяются.

    Обратите внимание: на интервале времени t6- t7 идет возврат энергии в источник, поскольку ток I1 меняет свое направление. Отрицательная амплитуда тока I1 определяется нагрузкой преобразователя. Этот факт определяет дополнительные преимущества способа - амплитуда тока через ключи не увеличивается вплоть до короткого замыкания в нагрузке. Также полностью отсутствует проблема сквозных токов, что упрощает и делает надежным управление транзисторов. Отпадает и проблема создания быстрых защит для предотвращения режима КЗ.

    Эта идея была положена в основе опытных образцов, а также серийных изделий, которые в настоящее время производит "Элкон". К примеру, преобразователь напряжения мощностью 1, 8 кВт, спроектированный для станции катодной защиты подземных трубопроводов, получает питание от однофазной сети переменного тока 220 В 50 Гц. В нем применены силовые транзисторы IGBT типа IRG4PC30UD класса ultra-fast со встроенным оппозитным диодом, емкость резонансного конденсатора (5) составляет 0,15 мкФ, индуктивность резонансных дросселей (7) и (8) - по 25 мкГн. Период собственных колебаний То составляет 12 мкс, коэффициент трансформации трансформатора (6.1) - 0,5, что определяет диапазон номинальной нагрузки (0,8…2,0) Ом. Для минимального значения периода коммутации Тк, равного 13 мкс (при частоте коммутации fk равной 77 кГц) и нагрузке 1 Ом амплитуды токов I1 и I2 соответственно составляют плюс 29 А и минус 7 А. Для нагрузки 0,5 Ом амплитуды токов I1 и I2 составили соответственно плюс 29 А и минус 14 А. В случае КЗ эти значения составляют плюс 29 А и минус 21 А, средний ток через нагрузку составляет 50 А, то есть проявляется эффект ограничения тока КЗ.

    На рисунке 14 показано семейство регулировочных характеристик преобразователя. Важно отметить, что во всем диапазоне частоты коммутации переключающие импульсы подаются при нуле токов. Эти результаты были получены в системе схемотехнического моделирования OrCAD 9.1, затем проверены на натурном макете.

    Для сравнения, на рисунке 15 представлено семейство регулировочных характеристик аналогичного по мощности классического резонансного преобразователя. Минимальный период коммутации Тк увеличен из-за возникновения сквозных токов и составляет 14 мкс (при частоте коммутации fк равной 72 кГц). Для этой номинальной частоты выполняется режим коммутации в нуле тока. Для сопротивления нагрузки 1 Ом амплитуда тока нагрузки равна 30А, для сопротивления 0.5 Ом амплитуда равна уже 58А. В случае КЗ амплитуда тока через транзисторы становится более 100 А, причем коммутация силовых транзисторов происходит уже не в нуле токов, а средний ток нагрузки становится более 180 А. Таким образом, как было указано ранее, возникает необходимость в быстрой защите от КЗ для исключения аварии.

    Участок регулирования "А" (тонкие линии) характеризует режим коммутации не в нуле тока. Практический интерес представляет участок регулирования "Б", когда частота коммутации меньше номинальной в два и более раз. Можно отметить, что глубина регулирования указанным способом для классического преобразователя значительно меньше, чем в преобразователе "Элкон", а необходимость работы на более низкой частоте коммутации ухудшает удельные энергетические показатели классического преобразователя. Предлагаемый преобразователь "Элкон" обладает практически приемлемыми регулировочными характеристиками и диапазоном изменения частоты коммутации.

    Учитывая мягкую нагрузочную характеристику, возможно регулирование выходного напряжения на фиксированной частоте за счет фазового регулирования двух преобразователей, соединенных параллельно по переменному напряжению. Этот вариант проверен на макете мощностью 1.2 кВт. Выходное напряжение изменяется от нуля до максимального.

    Полученные результаты позволяют предположить, что преобразователи напряжения, использующие новый способ резонансного преобразования, найдут более широкое применение во всех областях использования обычных преобразователей с ШИМ регулированием на десятки и более кВт.

    А теперь - немного о серийной продукции. Предприятие "Элкон" производит:
    - станции катодной защиты мощностью 0.6, 1.5, 3.0 и 5.0 кВт., с КПД в номинальном режиме не хуже 93%;
    - источники для ручной дуговой сварки мощностью 5.0 и 8.0 кВт с питанием от сети 220 вольт 50 Гц;
    - источники для ручной дуговой сварки мощностью 12 кВт с питанием от трехфазной сети 380 вольт 50 Гц;
    - источники для нагрева кузнечных заготовок мощностью 7.0 кВт с питанием от сети 220 вольт 50 Гц;
    - преобразователи для высоковольтной солнечной батареи мощностью 5.0 кВт с входным напряжением от 200 до 650 В и выходным напряжением 400 В; при модуляции выходного напряжения преобразователя по синусоидальному закону частотой 100 Гц и последующем распределении полуволн осуществлена передача электроэнергии от солнечной батареи в сеть 220 вольт 50 Гц.
    Сотрудники предприятия надеются, что данная идея вдохновит также и опытных радиолюбителей, которые заняты конструированием сварочной техники.

    ЛИТЕРАТУРА
    Мещеряков В.М. Силовая электроника- эффективный способ решения проблем региональной программы "Энергоресурсосбережения"//Электротехника. 1996. 12.с.1.
    Высокочастотные транзисторные преобразователи./Э.М.Ромаш, Ю.И.Драбович, Н.Н.Юрченко, П.Н.Шевченко -М.:Радио и связь,1988.-288с.
    Гончаров А.Ю. Серийно выпускаемые транзисторные преобразователи электроэнергии // Электроника: Наука, Технология, Бизнес. 1998. 2.с.50.
    Ковалев Ф.И., Флоренцев С.Н. Силовая электроника: вчера, сегодня, завтра //Электротехника. 1997. 11.с.2.
    Дмитриков В.Ф. и др. Новые высокоэффективные отечественные источники электропитания с бестрансформаторным входом // http//:www.add.ru/r/konkurs/st.18.html
    Патанов Д.А. Общие проблемы снижения коммутационных потерь в инверторах напряжения // http://www.add.ru/r/konkurs/avtst8.html
    Жданкин В.К. Устройства силовой электроники фирмы Zicon Electronics // Cовременные технологии автоматизации. 2001.N1.с.6.
    Белов Г.А. Высокочастотные тиристорно-транзисторные преобразователи постоянного напряжения. -М.: Энергоатомиздат,1987.-120с.
    Патент PCT, WO94/14230, 23.06.94, H02M 3/335.
    Патент PCT/MD 03/00001. 16.05.2002, H02M3/337 Что пишут

    Принцип вашему вниманию устройство с КПД выше 100%, вы скажете что вот это фейк и все не по настоящему, но это неправда. Собрано устройство на отечественных деталях. В конструкции трансформатора есть одна особенность, трансформатор Ш-образный с зазором по середине, но в зазоре есть неодимовый магнит, который задает начальный импульс на катушку обратной связи. Катушки съема можно мотать в любую сторону, но при этом нужна ювелирная точность в их намотке, они должны иметь одинаковую индуктивность. Если это не соблюсти, то резонанса не будет, об этом вас проинформирует вольтметр, подключенный параллельно к батарейке. Особого применения в данной конструкции я не нашел, но можно подключить источник света в виде ламп накаливания.

    Технических характеристики при резонансе:
    КПД выше 100%
    Обратный ток 163-167 миллиампер (сам не знаю как это так происходит, но батарея заряжается)
    Ток потребления 141 миллиампер (получается что 20 миллиампер - это свободная энергия и идет на заряд батареи)

    Красный провод катушка L1
    Зеленый провод катушка L2
    Черный провод это катушки съема

    Настройка

    На своем опыте убедился, что катушка Л1 намотанная одинаковым проводом, легче настраивается на резонанс с Л2, создавая больший ток чем потребляется. Как я понял создается ферромагнитный резонанс, что питает нагрузку и заряжает батарею большим током. Для настройки резонанса должны быть две одинаковые катушки или одна, при включенном устройстве они двигаются под нагрузкой лампы а виде накаливания (в моем случае лампа 12 Вольт 5 Ватт). Для настройки подключим вольтметр параллельно батарейке и начнем двигать катушки(у). При резонансе, напряжение на батарейке должно начать повышаться. Дойдя до определенного порога, батарейка перестанет заряжаться и разряжаться. На транзистор нужно установить большой радиатор. С случае с двумя катушками все сложнее, так как надо намотать их так, чтобы индуктивности практически не отличались, с разными нагрузками расположение правой и левой катушек будут меняться. Если не соблюсти эти правила настройки, то резонанса может и не произойти, при этом мы получим простой повышающий преобразователь с высоким КПД. Параметры катушек у меня такие 1:3, то есть Л1 8 витков, Л2 24 витка обе с одинаковым сечением провода. Л1 мотается поверх Л2. Съемные катушки без разницы каким проводом, но у меня 1.5мм.

    Фото

    Готовое устройство в безрезонансном состоянии (катушки подключены последовательно)

    Проба самозапитки от съемной катушки через диод. (Результат: неудача, работает 14 секунд с затуханием)

    Состояние резонанса на одной катушке без самозапитки через диод. Опыт удачен, с подключенной батарейкой преобразователь проработал 37 часов 40 минут, без потери напряжения на батарейке в начале опыта напряжение батарейки было 7.15 вольт, к концу 7.60 вольт. Данный опыт доказал, что преобразователь способен выдать КПД выше 100%. Для нагрузки использовал лампу накаливания 12 Вольт 5 Ватт. К попытке использовать другие устройства я отказался, так как магнитное поле вокруг устройства очень сильное и создает помехи в радиусе полтора метра, радио перестает работать в радиусе 10 метров.

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    VT1 Биполярный транзистор

    КТ819А

    1 КТ805 В блокнот
    C1 Конденсатор 0.1 мкФ 1 В блокнот
    C2 Электролитический конденсатор 50 мкФ 25 в 1 В блокнот
    R1 Резистор

    2.2 кОм

    1 В блокнот
    R2 Резистор

    62 Ом

    1 В блокнот
    Bat1 Батарея 12 Вольт 1

    Описываемое устройство обеспечивает исключительно высокий КПД преобразования, допускает регулирование выходного напряжения и его стабилизацию, устойчиво работает при вариации мощности нагрузки. Интересен и незаслуженно мало распространен этот вид преобразователей — квазирезонансный, который в значительной мере избавлен от недостатков других популярных схем. Идея создания такого преобразователя не нова, но практическая реализация стала целесообразной сравнительно недавно, после появления мощных высоковольтных транзисторов, допускающих значительный импульсный ток коллектора при напряжении насыщения около 1,5 В. Главная отличительная особенность и основное преимущество этого вида источника питания — высокий КПД преобразователя напряжения, достигающий 97...98% без учета потерь на выпрямителе вторичной цепи, которые, в основном, определяет ток нагрузки.

    От обычного импульсного преобразователя, у которого к моменту закрывания переключательных транзисторов ток, протекающий через них, максимален, квазирезонансный отличается тем, что к моменту закрывания транзисторов их коллекторный ток близок к нулю. Причем уменьшение тока к моменту закрывания обеспечивают реактивные элементы устройства. От резонансного он отличается тем, что частота преобразования не определяется резонансной частотой коллекторной нагрузки. Благодаря этому можно регулировать выходное напряжение изменением частоты преобразования и реализовывать стабилизацию этого напряжения. Поскольку к моменту закрывания транзистора реактивные элементы снижают до минимума ток коллектора, базовый ток также будет минимальным и, следовательно, время закрывания транзистора уменьшается до значения времени его открывания. Таким образом, полностью снимается проблема сквозного тока, возникающего при переключении. На рис. 4.22 показана принципиальная схема автогенераторного нестабилизированного блока питания.

    Основные технические характеристики:

    Общий КПД блока, %..................................................................92;

    Напряжение на выходе, В, при сопротивлении нагрузки 8 Ом....... 18;

    Рабочая частота преобразователя, кГц.........................................20;

    Максимальная выходная мощность, Вт...........................................55;

    Максимальная амплитуда пульсации выходного напряжения с рабочей частотой, В

    Основная доля потерь мощности в блоке падает на нагревание" выпрямительных диодов вторичной цепи, а КПД самого преобразователя таков, что нет необходимости в теплоотводах для транзисторов. Мощность потерь на каждом из них не превышает 0,4 Вт. Специального отбора транзисторов по каким-либо параметрам также не требуется. При замыкании выхода или превышении максимальной выходной мощности генерация срывается, защищая транзисторы от перегревания и пробоя.

    Фильтр, состоящий из конденсаторов С1...СЗ и дросселя LI, L2, предназначен для защиты питающей сети от высокочастотных помех со стороны преобразователя. Запуск автогенератора обеспечивает цепь R4, С6 и конденсатор С5. Генерация колебаний происходит в результате действия положительной ОС через трансформатор Т1, а частоту их определяют индуктивность первичной обмотки этого трансформатора и сопротивление резистора R3 (при увеличении сопротивления частота увеличивается).

    Дроссели LI, L2 и трансформатор Т1 наматывают на одинаковых кольцевых магнитопроводах К12х8хЗ из феррита 2000НМ. Обмотки дросселя выполняют одновременно, «в два провода», проводом ПЭЛШО-0,25; число витков — 20. Обмотка I трансформатора TI содержит 200 витков провода ПЭВ-2-0,1, намотанных внавал, равномерно по всему кольцу. Обмотки II и III намотаны «в два провода» — 4 витка провода ПЭЛШО-0,25; обмотка IV представляет собой виток такого же провода. Для трансформатора Т2 использован кольцевой магнитопровод К28х16х9 из феррита 3000НН. Обмотка I содержит 130 витков провода ПЭЛИ10-0,25, уложенных виток к витку. Обмотки II и III — по 25 витков провода ПЭЛШО-0,56; намотка — «в два провода», равномерно по кольцу.

    Дроссель L3 содержит 20 витков провода ПЭЛИ10-0,25, намотанных на двух, сложенных вместе кольцевых магнитопроводах К12х8хЗ из феррита 2000НМ. Диоды VD7, VD8 необходимо установить на теплоотводы площадью рассеяния не менее 2 см2 каждый.

    Описанное устройство было разработано для использования совместно с аналоговыми стабилизаторами на различные значения напряжения, поэтому потребности в глубоком подавлении пульсаций на выходе блока не возникало. Пульсации можно уменьшить до необходимого уровня, воспользовавшись обычными в таких случаях LC-фильтрами, как, например, в другом варианте этого преобразователя с такими основными техническими характеристиками:

    Номинальное выходное напряжение, В.............................................5,

    Максимальный выходной ток, А...................................................... 2;

    Максимальная амплитуда пульсации, мВ........................................50;

    Изменение выходного напряжения, мВ, не более, при изменении тока нагрузки

    от 0,5 до 2 А и напряжения сети от 190 до 250 В........................150;

    Максимальная частота преобразования, кГц.................................. 20.

    Схема стабилизированного блока питания на основе квазирезо-нансного преобразователя представлена на рис. 4.23.

    Выходное напряжение стабилизируется соответствующим изменением рабочей частоты преобразователя. Как и в предыдущем блоке, мощные транзисторы VT1 и VT2 в теплоотводах не нуждаются. Симметричное управление этими транзисторами реализовано с помощью отдельного задающего генератора импульсов, собранного на микросхеме DDI. Триггер DD1.1 работает в собственно генераторе.

    Импульсы имеют постоянную длительность, заданную цепью R7, С12. Период же изменяется цепью ОС, в которую входит оптрон U1, так что напряжение на выходе блока поддерживается постоянным. Минимальный период задает цепь R8, С13. Триггер DDI.2 делит частоту следования этих импульсов на два, и напряжение формы «меандр» подается с прямого выхода на транзисторный усилитель тока VT4, VT5. Далее усиленные по току управляющие импульсы дифференцирует цепь R2, С7, а затем, уже укороченные до длительности примерно 1 мкс, они поступают через трансформатор Т1 в базовую цепь транзисторов VT1, VT2 преобразователя. Эти короткие импульсы служат лишь для переключения транзисторов — закрывания одного из них и открывания другого.

    Кроме того, основная мощность от генератора возбуждения потребляется только в моменты переключения мощных транзисторов, поэтому средний ток, потребляемый им, мал и не превышает 3 мА с учетом тока стабилитрона VD5. Это и позволяет питать его прямо от первичной сети через гасящий резистор R1. Транзистор VT3 является усилителем напряжения сигнала управления, как в компенсационном стабилизаторе. Коэффициент стабилизации выходного напряжения блока прямо пропорционален статическому коэффициенту передачи тока этого транзистора.

    Применение транзисторного оптрона U1 обеспечивает надежную гальваническую развязку вторичной цепи от сети и высокую помехозащищенность по входу управления задающего генератора. После очередного переключения транзисторов VT1, VT2 начинает подзаряжаться конденсатор СЮ и напряжение на базе транзистора VT3 начинает увеличиваться, коллекторный ток тоже увеличивается. В результате открывается транзистор оптрона, поддерживая в разряженном состоянии конденсатор С13 задающего генератора. После закрывания выпрямительных диодов VD8, VD9 конденсатор СЮ начинает разряжаться на нагрузку и напряжение на нем падает. Транзистор VT3 закрывается, в результате чего начинается зарядка конденсатора С13 через резистор R8. Как только конденсатор зарядится до напряжения переключения триггера DD1.1, на его прямом выходе установится высокий уровень напряжения. В этот момент происходит очередное переключение транзисторов VT1, VT2, а также разрядка конденсатора СИ через открывшийся транзистор оптрона.

    Начинается очередной процесс подзарядки конденсатора СЮ, а триггер DD1.1 через 3...4 мкс снова вернется в нулевое состояние благодаря малой постоянной времени цепи R7, С12, после чего весь цикл управления повторяется, независимо от того, какой из транзисторов — VT1 или VT2 — открыт в текущий полу период. При включении источника, в начальный момент, когда конденсатор СЮ полностью разряжен, тока через светодиод оптрона нет, частота генерации максимальна и определена в основном постоянной времени цепи R8, С13 (постоянная времени цепи R7, С12 в несколько раз меньше). При указанных на схеме номиналах этих элементов эта частота будет около 40 кГц, а после ее деления триггером DDI.2 — 20 кГц. После зарядки конденсатора СЮ до рабочего напряжения в работу вступает стабилизирующая петля ОС на элементах VD10, VT3, U1, после чего и частота преобразования уже будет зависеть от входного напряжения и тока нагрузки. Колебания напряжения на конденсаторе СЮ сглаживает фильтр L4, С9. Дроссели LI, L2 и L3 — такие же, как в предыдущем блоке.

    Трансформатор Т1 выполнен на двух сложенных вместе кольцевых магнитопроводах К12x8x3 из феррита 2000НМ. Первичная обмотка намотана внавал равномерно по всему кольцу и содержит 320 витков провода ПЭВ-2-0,08. Обмотки II и III содержат по 40 витков провода ПЭЛ1110-0,15; их наматывают «в два провода». Обмотка IV состоит из 8 витков провода ПЭЛШО-0,25. Трансформатор Т2 выполнен на кольцевом магнитопроводе К28х16х9 из феррита 3000НН. Обмотка I — 120 витков провода ПЭЛШО-0,15, а II и III — по 6 витков провода ПЭЛ1110-0,56, намотанных «в два провода». Вместо провода ПЭЛШО можно использовать провод ПЭВ-2 соответствующего диаметра, но при этом между обмотками необходимо прокладывать два-три слоя лакоткани.

    Дроссель L4 содержит 25 витков провода ПЭВ-2-0,56, намотанных на кольцевой магнитопровод К12х6х4,5 из феррита 100НН1. Подойдет также любой готовый дроссель индуктивностью 30...60 мкГн на ток насыщения не менее 3 А и рабочую частоту 20 кГц. Все постоянные резисторы — MJIT. Резистор R4 — подстроенный, любого типа. Конденсаторы С1...С4, С8 — К73-17, С5, С6, С9, СЮ - К50-24, остальные - КМ-6. Стабилитрон КС212К можно заменить на КС212Ж или КС512А. Диоды VD8, VD9 необходимо установить на радиаторы площадью рассеяния не менее 20 см2 каждый. КПД обоих блоков можно повысить, если вместо диодов КД213А использовать диоды Шоттки, например, любые из серии КД2997. В этом случае теплоотводы для диодов не потребуются.

    В этой статье речь пойдет о LLC резонансном импульсном источнике питания (ИИП), для УМЗЧ на базе контроллера IRS27952 (он же IRS27951), так же будет подробно описан упрощенный метод расчета всех элементов для данного импульсного блока питания. Сразу хочется обратить внимание на то, что процесс расчета и изготовления резонансного ИИП весьма сложен и не каждый сможет с ним справиться, поэтому не рекомендуется браться за построение данного блока питания малоопытным радиолюбителям, правильно оценивайте свои силы. Само собой, для изготовления подобного источника питания, в наличии должен быть осциллограф и прибор, позволяющий измерять емкость и индуктивность (LC-метр). Описанный в статье метод расчета - упрощенный, он не учитывает всех нюансов и тонкостей, но его достаточно чтобы построить работоспособный резонансный импульсный источник питания. В статье не будет подробного описания принципа работы резонансных импульсных преобразователей, основной упор будет сделан на описание процесса расчета и изготовления резонансного ИИП.

    В чем же преимущества резонансного ИИП в сравнении с "классическим импульсником"? Преимущества резонансного режима - это низкие потери и электромагнитные помехи (которые гораздо проще поддаются контролю и фильтрации), ниже потери восстановления выпрямительных диодов, меньше нагрузка на все элементы блока питания, что дает повышенную надежность и долговечность относительно "классических ИИП", возможность работы на гораздо более высоких частотах без ущерба эффективности, надежности и стоимости. И самый главное преимущество: резонансник - это модно:D

    • Выходная мощность (расчетная) = 250Вт
    • Выходная мощность (максимально испытанная) = 276Вт
    • Выходное напряжение (в диапазоне от 0Вт до 276Вт) = +/- 40В (+/-0.1В)
    • КПД (при выходной мощности 276Вт) = 92%

    Осциллограммы формы тока через первичную обмотку резонансного трансформатора (при разных значениях выходной мощности):

    Описываемый ИИП имеет в наличии софт-старт, защиту от короткого замыкания в нагрузке и стабилизацию выходного напряжения, которая точно поддерживает выходное напряжение преобразователя на одном уровне, во всем диапазоне выходных мощностей. При работе на выходной мощности до 200Вт, нет никакого ощутимого нагрева, ни одного из элементов блока питания. Силовые ключи на радиатор не устанавливались. При выходной мощности 276Вт, ключи становятся едва ощутимо теплыми, но уже ощутимо начинает разогреваться первична обмотка трансформатора. Защита от КЗ работает исправно. При замыкании выхода преобразователя, прекращается генерация, блок питания переходит в спящий режим и находится в нем до того момента пока короткое замыкание не будет устранено. После устранения короткого замыкания, по прошествии определенного времени, блок питания самостоятельно перезапускается и продолжает работу в нормальном режиме.

    Схема резонансного импульсного источника питания на базе IRS27952:

    Подробно описывать принцип работы схемы не буду, остановлюсь лишь на отдельных моментах. Первоначальный запуск преобразователя происходит через цепь из резисторов R16, R10, R7 и R6. Дальнейшее питания контроллера осуществляется от цепи самопитания (R14, C8, VD4, VD7). Стабилитрон VD2 поддерживает напряжение питания контроллера на одном уровне - 16В. Хочу обратить внимание, что IRS27952, в отличает от например IR2153 и IR2161, не имеет встроенного стабилитрона, поэтому применение внешнего стабилитрона строго обязательно, иначе контроллер гарантированно выйдет из строя. Конденсаторы C3 и C5 сглаживают пульсации и устраняют помехи в цепи питания IRS27952. Цепочки резисторов R1, R2, R3 и R5, R9, R15 - предназначены для разрядки конденсаторов после отключения сетевого питания преобразователя. Отдельное внимание следует уделить следующим элементам: Rfmin, Rfmax, Rfss, Ct, Css - это частото и время задающие элементы преобразователя, их номиналы необходимо рассчитывать под ваши конкретные задачи, об этом будет далее. Стабилитроны VD10 и VD13, так же подбираются под необходимое вам выходное напряжение: суммарное напряжение стабилизации двух стабилитронов должно быть равно расчетному значению выходного напряжения одного плеча, в данном случае для получения выходного напряжения +/-40В, применены два стабилитрона по 20В. Пожалуй это все что можно рассказать о схеме, принципиально она мало отличается от любой из схем импульсного преобразователя, выполненного на контроллерах от International Rectifier (теперь уже - Infineon). Самое время перейти к расчету.

    Расчет резонансной цепи. Для расчета нам потребуется программа ResonantSMPS из состава пакета , авторства Старичка. Сразу скажу, что метод расчета описанный далее, является упрощенным и опытный глаз сможет найти в нем некоторые упущения, сделано это намерено, ради того чтобы максимально упростить расчет, чтобы максимальное числом неподготовленных радиолюбителей смогло повторить данный резонансный ИИП. И так, открываем программу и вводим исходные данные:

    На первом этапе вводим все исходные данные как на скриншоте выше (дальше мы будем их корректировать). Все что вам нужно выбрать самостоятельно - это выходное напряжение. В окошке напротив "Номинальное напряжение, В", вводим необходимое вам напряжение. Например, если вам необходимо двухполярное выходное напряжения +/-40В, то вводим 80В (80В=40В+40В). Повторюсь: необходимо подобрать номиналы стабилитронов VD10 и VD13, таким образом, чтобы их суммарное напряжение стабилизации было примерно равно необходимому вам выходному напряжению ИИП (напряжению одного плеча). То есть, если вам необходимо выходное напряжение +/-40В, то необходимо использовать два стабилитрона по 20В, если необходимо например +/-35В, то стабилитрон VD10 на 30В и стабилитрон VD13 на 5,1В. Номинальный ток вычисляем из необходимой нам выходной мощности блока питания и напряжения. Допустим мы хотим получить ИИП с выходной мощностью 200Вт, значит нам необходимо желаемые 200Вт разделить на номинальное напряжение, в нашем случае 200Вт/80В и получится номинальный ток = 2,5А - это значение вписываем в соответствующее окошко программы. Прямое падение на диодах указываем 1В. Если вы знаете точное значение падения напряжения на диоде, то указывайте его, но в любом случае можно указывать прямое падение на диодах равно одному вольту, на точность расчета это почти никак не повлияет, на работоспособность тем более. Далее выбираем тип выпрямления - мостовое. И вводим желаемые диаметры проводов, которыми вы будете наматывать трансформатор. Диаметр провода не должен быть более 0,5мм, лучше использовать более тонкий провод и мотать в несколько жил. После этого выбираем подходящий сердечник:

    Я использовал сердечник ETD29 и поэтому на плате посадочное место сделано под этот тип и размер сердечника, под любой другой сердечник придется корректировать печатную плату. А вам необходимо выбрать такой сердечник, чтобы он подходил по габаритной мощности и вся обмотка уместилась на его каркасе. После выбора сердечника, жмем кнопку "Рассчитать" и смотрим что у нас получилось:

    Сразу нужно выставить минимально возможную величину немагнитного зазора, равную той, что предлагает программа (в моем случае 0,67мм) и снова нажать кнопку "рассчитать". После этого смотрим только на одну строку - это "емкость резонансного конденсатора". Чтобы упростить себе жизнь и не тратить свое время и силы на подбор нестандартной емкости из нескольких последовательно-параллельно соединенных конденсаторов, меняем значение резонансной частоты в соответствующем окошке программы, таким образом, чтобы емкость резонансного конденсатора получилась равна какому-либо стандартному значению емкости. В моем случае емкость резонансного конденсатора получилась 28нФ, ближайшее стандартное значение 33нФ, к этому значению и будем стремиться.

    При манипуляциях с резонансной частотой, величину зазора всегда нужно устанавливать минимальной или очень близкой к минимальному значению что предлагает программа. Резонансную частоту я рекомендую выбирать в диапазоне 85 - 150кГц.. В моем случае резонансная частота, соответствующая "удобной" резонансной емкости, получилась 90кГц. Все самые главные цифры которые вам нужно запомнить, записать, заскринить, которые понадобятся в дальнейшем:

    Значения в красных прямоугольниках понадобятся вам при намотке трансформатора. Хочу обратить внимание, что число витков вторичной обмотки соответствует введенному значению выходного напряжения - 80В. Если мы хотим получить блок питания с двухполярным выходным напряжением +/-40В, необходимо мотать не одну, а две вторичные обмотки, в данном случае две обмотки по 12-13 витков (полученные 25 витков делим на два). Для дальнейших расчетов нам нужно взглянуть на передаточную характеристику (для этого нужно на нажать на соответствующую кнопку в левом верхнем углу окна программы):

    Запоминаем значения Fmin и Fmax. У нас они равны: Fmin=54кГц, Fmax=87кГц. Эти значения нам будут нужны для дальнейших расчетов.

    Расчет номиналов обвязки IRS27952. В самом конце этой статьи нужно скачать файл NominaliObvyazki.xlsx . Для открытия его вам потребуется Microsoft Excel. Открываем файл и видим следующее:

    Осталось только ввести наши Fmin и Fmax полученные выше и получить все номиналы обвязки IRS27952. Единственное, нам нужно выбрать емкость конденсаторы Ct, который задает величину мертвого времени. По хорошему, для этого потребовался бы достаточно сложный расчет, который необходимо выполнять исходя из параметров применяемых ключей, но поскольку у нас расчет упрощенный, я рекомендую просто использовать в качестве конденсаторы Ct, конденсатор с емкостью 390-470пФ. Этой емкости и соответствующего ему - мертвого времени, будет достаточно чтобы не перейти в режим жесткого переключения, при применении большинства популярных ключей, таких как как IRF740, STP10NK60, STF13NM60 и указанных в схеме 2SK3568. Оптимальная продолжительность софт-старта - 0,1 сек, можно установить большую продолжительность до 0,3 сек, больше не имеет смысла (при выходной емкости конденсаторов ИИП до 10000мкФ). Вводим наши Fmin и Fmax и получаем:

    Все номиналы обвязки (кроме емкости конденсатора софт-старта), автоматически округляются до ближайших стандартных значений. Тут же можно видеть фактические значения минимальной, максимальной частот и частоты софт-старта, которые получатся с применяемыми стандартными номиналами обвязки. Емкость конденсатора софт-старта набирается из нескольких конденсаторов, керамических SMD и электролитического, для этого предусмотрено достаточно места на печатной плате. На этом расчет можно считать оконченным.

    Реализация резонансной цепи. В резонансную цепь входят: резонансный трансформатор, резонансная емкость и дополнительный резонансный дроссель (если он необходим). Номинал резонансной емкости нам уже известен. Резонансный конденсатор должен быть пленочным, типа CBB21 или CBB81, допускается так же CL21 (но не рекомендуется). Напряжение конденсатор должно быть не менее 630В, лучше 1000В. Связано это с тем, что максимально допустимое напряжение на конденсаторе зависит от частоты тока через конденсатор, конденсатор на 400В проживет не долго. И теперь самое интересное - резонансный трансформатор. Для его намотки у нас есть все необходимые исходные данные. Как мотать? Вариантов есть несколько. Первый вариант: мотать как обычный трансформатор - мотаем первичку на всю ширину каркаса, после мотаем вторичку на всю ширину каркаса (или наоборот, сначала вторичку, потом первичку). Второй вариант: мотать вторичку на всю ширину каркаса, а первичку на половину или на треть ширины каркаса (или наоборот - первичку на всю ширину, а вторичку на половину или треть ширины каркаса). И третий вариант: использовать секционную намотку, когда первичная и вторичная обмотки полностью разделены. Для этого потребуется либо специальный секционированный каркас или такой каркас придется сделать самому, разделив каркас пластиковой перегородкой.

    Зачем это и что это дает? Первый вариант - самый простой, но дает минимальную индуктивность рассеивания. Второй вариант - очень неудобный в намотке, дает среднюю по величине индуктивность рассеивания. Третий вариант - дает самую высокую и самую предсказуемую величину индуктивности рассеивания, кроме того наиболее удобный в намотке способ. Вы можете выбирать любой из вариантов. После того как вы определились с вариантом намотки и намотали нужное количество витков первичной и вторичной обмоток, необходимо изменить получившуюся индуктивность рассеивания первичной обмотки получившегося трансформатора. Для этого необходимо собрать трансформатор. На этом этапе склеивать части сердечника и вводить зазор не нужно (от величины зазора, наличия его или отсутствия, индуктивность рассеивания не зависит), достаточно временно стянуть сердечник изолентой. Необходимо, с помощью пайки, надежно замкнуть все выводы вторичной обмотки между собой и измерить индуктивность первичной обмотки. Полученное значение индуктивности и будет индуктивностью рассеивания первичной обмотки трансформатора. Допустим у вас получилась индуктивность рассеивания 50мкГн. Сравниваем получившееся значение с расчетным значением Lr, которое вы рассчитали выше:

    Не сошлось! Надо 94мкГн, а у нас получилось 50мкГн. Что делать? Главное не паниковать! Такое бывает, обязательно будет у вас и это абсолютно нормально. Устранить это несоответствие нам поможет дополнительный резонансный дроссель. Но, если еще не забыли, чуть выше я писал про три варианта намотки трансформатора?! Так вот, первый способ дает самую низкую индуктивность рассеивания и используя его, вам гарантированно понадобится дополнительный дроссель. Второй вариант дает среднюю по величине индуктивность рассеивания и дроссель скорее всего вам все равно понадобится, но не с такой большой индуктивностью, как при использовании первого варианта. А вот в случае использования третьего варианта, возможно сразу получить необходимую индуктивность рассеивания первичной обмотки трансформатора, без использования дополнительно резонансного дросселя. Необходимая индуктивность рассеивания, при третьем варианте намотки, получается правильным выбором соотношения ширины намотки первичной и вторичной обмоток. Возможно даже что вам повезет и вы сможете угадать с шириной намотки первички и вторичек, и сходу получить нужную индуктивность рассеивания (как это получилось у меня). Но если вам не повезло и измеренная индуктивность рассеивания и необходимое расчетное значение не совпали, то необходимо использовать дополнительный резонансный дроссель. Индуктивность дросселя должна быть равна: расчетное значение Lr минус получившееся реальное значение индуктивности рассеивания первичной обмотки. В нашем случае: 94мкГн-50мкГн=44мкГн - именно такой должна быть индуктивность дополнительного резонансного дросселя, который на схеме и на плате показан как Lr. На чем мотать? Мотать правильнее всего на кольце из материала -2 или -14, выглядят такие кольца следующим образом:

    Для намотки резонансного дросселя так же допускается использовать ферритовые кольца (зеленые или синие), но обязательно с зазором. Величина зазора выбирается произвольно. Для колец из материала -2 и -14 зазор не нужен. Мотать резонансный дроссель необходимо тем же проводов и тем же количеством жил что и первичную обмотку трансформатора. Количество витков должно быть таким, чтобы получить необходимое значение индуктивности, в нашем случае 44мкГн. И когда дроссель (если он оказался необходим) и резонансный трансформатор намотаны, необходимо подогнать индуктивность его первичной обмотки к расчетному значению. Выше мы уже вычислили какой должна быть полная индуктивность первичной обмотки трансформатора. В случае если реальная индуктивность рассеивания совпала с расчетным значением резонансной индуктивности и дополнительный резонансный дроссель оказался не нужен, то индуктивность первичной обмотки, подбором величины зазора в сердечнике трансформатора, подгоняется под расчетное значение:

    То есть, необходимо, постепенно увеличивать зазор между частями сердечника трансформатора, пока измеренная индуктивность первичной обмотки трансформатора не станет равной нашему расчетному значению - 524мкГн. Но это только в случае, если не будет использоваться дополнительный резонансный дроссель. Если дополнительный дроссель будет присутствовать, то из расчетного значения полной индуктивности первичной обмотки, необходимо вычесть индуктивность этого дополнительного дросселя. В нашем случае получается 524мкГн-44мкГн=480мкГн, именно такой должна получится индуктивности первчиной обмотки нашего трансформатора. Индуктивность первичной обмотки измеряется с разомкнутыми вторичными обмотками. После достижения необходимого значения индуктивности первичной обмотки трансформатора, можно считать трансформатор и резонансный дроссель готовыми, а расчет оконченным.

    Как убедиться что все получилось, что получившийся ИИП действительно резонансник? Необходимо с помощью осциллографа смотреть форму тока через первичную обмотку трансформатора. Для этого, в случае наличия дополнительного резонансного дросселя, на него наматывается временная пробная обмотка из 2-3 витков тонкого провода, нагружается на резистор сопротивлением 330-750Ом, а к этой обмотке подключается осциллограф. Форма тока должна быть синусоидальной или близкой к синусоидальной (примерно такой, как показано на моих осциллограммах выше). Если резонансного дросселя нет, то на его место, временно устанавливается токовый трансформатор. Он представляет из себя ферритовое кольцо с обмоткой содержащей 40-50 витков тонкого провода, нагруженная на резистор 330-750Ом, к которой подключается осциллограф и второй обмоткой из одного витка, которая включается на место резонансного дросселя.

    Немного фотографий:




    В завершении статьи хочу поблагодарить за предоставленные для опытов микросхемы IRS27952 и другие SMD элементы!

    Спасибо за внимание!

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    LLC Резонансный ИИП на базе IRS27952
    R6 Резистор

    0 Ом

    1 SMD1206 В блокнот
    R4, R11, R13 Резистор

    4.7 Ом

    3 SMD1206 В блокнот
    R8, R12 Резистор

    22 Ом

    2 SMD1206 В блокнот
    R17 Резистор

    750 Ом

    1 SMD1206 В блокнот
    R18, R19 Резистор

    24 кОм

    2 SMD1206 В блокнот
    R1, R2, R3, R5, R9, R15 Резистор

    120 кОм

    6 SMD1206 В блокнот
    R7, R10, R16 Резистор

    270 кОм

    3 SMD1206 В блокнот
    R14 Резистор

    4.7 Ом

    1 Выводной, 0.25Вт В блокнот
    Rfmin Резистор * 1 SMD1206 В блокнот
    Rfss Резистор * 1 SMD1206 В блокнот
    Rfmax Резистор * 1 Выводной, 0.25Вт В блокнот
    C2 Конденсатор пленочный 100 нФ 1 CL21, 400В В блокнот
    C4, C7 Конденсатор пленочный помехоподавляющий 100 нФ 2 X2, 275В В блокнот
    C8 Конденсатор керамический 1 нФ 1 630/1000В В блокнот
    C6, C5 Конденсатор керамический 100 нФ 2 SMD1206, 50В В блокнот
    C11, C12, C13, C14, C15, C16 Конденсатор керамический 1 мкФ 6 SMD1206, 50В В блокнот
    C3 10 мкФ 1 25В В блокнот
    C1 Конденсатор электролитический 220 мкФ 1 400В

    Похожие статьи