Простейшая однокомандная схема радиоуправления моделями (3 транзистора). Четырехкомандная система радиоуправления Устройство радиоуправления на 4 команды

Эта система радиоуправления предназначена для выполнения одной команды, в то-же время её модно расширить до четырёх-пяти команд. К её достоинствам можно отнести минимальные габариты платы приёмника, и сведение к минимуму числа его высокочастотных катушек. Систему можно использовать в каких-либо пусковых устройствах, в системе охранной сигнализации, персонального вызова, или дистанционного управления моделями и приборами.

Во всех этих случаях когда нудно дистанционное управление с расстояния до 500-500м в городе, и до 5000м в открытом пространстве или над водой.

Технические характеристики:

1. Рабочая частота канала............. 27,12 Мгц.
2. Мощность передатчика.............. 600 мВт.
3. Напряжение питания передатчика......... 9 В.
4. Ток потребления передатчиком............. 0,3 А.
5. Чувствительность приёмника............... 2мкв.
6. Селективность при расстройке на 10 кгц......... 36 дб.
7. Напряжение питания приемника........... 3,3-5В.
8. Ток потребления приёмника в покое............... 12 мА.
9. Ток потребления приёмником при срабатывании - 60 мА, и зависит от типа используемого реле.

Принципиальная схема и монтажная приёмного тракта изображена на рисунке 1. Радиочастотный сигнал от антенны через переходной конденсатор С1 поступает в входной контур L1 С2 настроенный на частоту 27,12 Мгц. С выхода этого контура сигнал поступает на высокочастотный усилитель на полевом транзисторе VT1. Диод VD1 служит для ограничении исходного сигнала при не большом расстоянии между антеннами приёмника и передатчика.

Этот транзистор согласует несимметричный высокоомный выход контура с симметричным низкоомным входом микросхемы DA1, которая выполняет функции преобразователя частоты. Частота гетеродина определяется частотой резонанса резонатора Q1. В данном случае частота гетеродина 26,655 мгц. Сигнал промежуточной частоты 465 кгц выделяется на нагрузке преобразователя резисторе R3.

С этого резистора сигнал ПЧ через пьезокерамический фильтр Q2 (он определяет всю селективность) поступает на микросхему DA2, на которой выполнен усилитель промежуточной частоты, амплитудный детектор, система АРУ и усилитель низкой частоты. С выхода детектора микросхемы (выгод 8) низкочастотное напряжение амплитудой 50-100 мВ поступает через подстроечный резистор R8 на вход УЗЧ, который усиливает этот сигнал до 1,5 - 2 В.

Усиленный низкочастотный сигнал с вывода 12 микросхемы, через С1В поступает на каскад на транзисторе VT2. Это рефлексный ключевой каскад. Он усиливает переменное напряжение, которое с его коллектора поступает на колебательный контур L2 С19, настроенный на 1250 гц.

Если входное напряжение имеет эту частоту контур входит в резонанс и на катоде диода VD2 появляется постоянное напряжение, которое приводит к открыванию транзистора. Его коллекторный ток увеличивается и как только достигает значения срабатывания реле XS оно срабатывает и замыкает или размыкает своими контактами цепь устройства, подлежащего управлению.

Конструктивно приёмник собран на малогабаритной печатной плате, схема которой изображена в натуральную величину. Нужно использовать малогабаритные детали. Катушка L1 наматывается на цилиндрическом ферритовом стержне диаметром 2,8 мм и длиной 12 мм. Она содержит 14 витков провода ПЭВ-0,31. Наматывают её так, чтобы сердечник мог с некоторым трением двигаться в ней. Пьезокерамический фильтр тоже малогабаритный - ФГЛП061-02 на 465 кгц. Можно использовать и другой фильтр на эту частоту важно, чтобы габариты позволяли.

Реле - РЭС55 - герконовое, паспорт РС4.569.603. Это реле допускает ток коммутации до 0,25А. Можно использовать другое малогабаритное реле, например РЭС43 или РЭС44. Катушка низкочастотного контура L2 намотана на ферритовом кольце К7-4-2 из феррита 400НН, она содержит 350 витков провода ПЭВ-0,06.

Настройка ВЧ части приёмника сводится к настройке входного контура на частоту канала. Настройка каскада на VT2 сводится к установке режима таким образом, чтобы при выключенном модуляторе передатчика контакты реле находились в обесточенном положении. Режим устанавливают подбором R9, в некоторых случаях его можно исключить. R8 подстраивают таким образом, что-бы была максимальная чувствительность и при этом реле не срабатывало от шумов.

Принципиальная схема передатчика изображена на рисунке 2. Задающий генератор передатчика выполнен на VT1 с кварцевой стабилизацией частоты. Кварцевый резонатор Q1 выбран на частоту несущей - 27,12 Мгц. Напряжение этой частоты выделяется в дросселе L1 и через конденсатор С8 поступает на усилитель мощности на транзисторе VT2. Усиленное напряжение ВЧ выделяется на дросселе L3.

Для согласования с антенной используется двойной "51" образный контур на элементах L4, L5, С12, С13, С14 и С15. Он согласует по входному сопротивлению антенну и выход передатчика, и отфильтровывает гармоник несущей частоты. Катушка L6 используется для увеличения эквивалентной длины антенны и следовательно к увеличению отдаваемой энергии.

Для модуляции используется ключевой каскад на транзисторе VT3. При подаче на его базу отрицательного относительно эмиттера напряжения он открывается и подаёт питание на усилитель мощности.

Прямоугольные импульсы для управления модулятором вырабатывает мультивибратор на микросхеме D1. Частота генерации определяется конденсатором С3 и резисторами R1 и R2. Элемент D1.3 выполняет роль формирователя импульсов, а D1.4 выключателя модуляции.

В рабочем режиме при отсутствии команды питание поступает на передатчик (S2 замкнут). Тумблер S1 в этом случае замкнут, и на выходе элемента D1.4 устанавливается напряжение близкое к нулю (относительно минуса питания). Это напряжение является отрицательным по отношению к эмиттеру VT3. Оно через R5 поступает на базу этого транзистора и открывает его.

В результате в режиме отсутствия команды передатчик излучает не модулированный сигнал. Это нужно для того, чтобы забить высокочастотный тракт приёмника и исключить влияние на его работу электрических помех и атмосферных шумов. Для того, чтобы послать команду нужно разомкнуть тумблер S1. Тогда элемент D1.2 откроется и пропустит через себя прямоугольные импульсы от мультивибратора.

Передатчик будет излучать модулированный сигнал, реле приёмника сработает. Если нет опасности от помех и расстояние между приёмником и передатчиком небольшое можно исключить постоянное излучение, разомкнув S1 и посылать команды только замыкая S2. Такой режим нужно использовать при работе аппаратуры в охранном комплексе, так как занимать частоту на столь длительное время нельзя.

Передатчик смонтирован на печатной плате, рисунок которой в натуральную величину изображен на рисунке 2. В передатчике делать минимальные габариты платы не обязательно и можно использовать не такие малогабаритные детали как в приёмнике.

Микросхему К176ЛА7 можно заменить на K561ЛA7 или при изменении разводки платы на К564ЛА7. Транзистор VT1 можно использовать КТ608 с любой буквой, VT2 - КТ606, КТ907. VТ3 - KT816 или ГТ403.

Катушки передатчика L4 и L5 бескаркасные, они имеют диаметр 7 мм и длину 10 мм, L4 содержит 15 витков ПЭВ-0,61, L6 20 витков ПЭВ-0,56. Катушка L6 выполнена так-же как и катушка входного контура приёмника, она имеет ферритовый сердечник. Она содержит 18 витков ПЭВ-0,2. Дроссели L1, L2 и L3 наматываются на постоянных резисторах МЛТ-0,5 сопротивлением не менее 100-с проводом ПЭВ-0,16, по 40 витков. В качестве антенны используется штырь длиной 75 см.

Настройка

Передатчик настраивают при помощи волномера с индикатором напряженности поля или высокочастотным осциллографом (С1-65) с катушкой на входе. В обеих случаях тумблер S1 замыкают и измеряют напряжение на коллекторе VT3, оно должно быть близко к напряжению питании.

Затем с подключенной рабочей антенной путём сжатия и раздвигании витков L4 и L5, подстройкой С13 и изменяем индуктивности перемещением сердечника L6 добиваются максимального неискаженного синусоидального сигнала основной частоты (по ошибке можно настроиться на гармонику), регистрируемого волномером или осциллографом с расстояния около 1 метра от антенны.

Теперь можно включить модуляцию тумблером S1. Теперь на экране осциллографа должен быть виден модулированный сигнал если уменьшить период развёртки осциллографа на его экране появятся сплошные прямоугольники, они не должны иметь искажений и выбросов. Сопряжение низкочастотных настроек приемника и передатчика производится в передатчике подстройкой резистора по максимальной дальности срабатывания.

Если нужно сделать несколько команд нужно сделать переключатель, который будет коммутировать несколько резисторов R2. В приёмнике нужно сделать несколько каскадов, аналогичных каскаду на VT2, которые будут отличаться только емкостью С19, и и подключить их к точке "А" (рис.1). Рекомендуемые емкости С19 для четырёх команд - 0,15 мкф, 0,1 мкф, 0,068 мкф и 0,033 мкф.

После настройки все катушки передатчика и входную катушку приёмника нужно зафиксировать эпоксидной смолой.

Мне досталась парочка вот таких:

Радио брелоков вестимых из Китая, на частоту 433.92 МГц, вот на основе их и сделано радиоуправление.

Вскрытие брелоков установило, что основой их служит микросхема кодера LX2240B . Питание осуществляется от двух литиевых батареек CR2016.


Описание этой микросхемы не сложно найти в сети. Микросхема содержит всего 4 линии данных, что позволяет подключить к ней 15 кнопок. Коды кнопок от 0x01 до 0x0F.

Формат посылки следующий:

ISN – это идентификационный номер, для которого отводиться 20 бит. Данная микросхема может содержать 1048576 комбинаций кода. Так что, совпадения маловероятны.

Synchronization code – служит для разделения пакетов данных.

Общая длинна пакета 24 бита.

Кодирование одного бита выглядит так:

Это кодирование единицы.

Это кодирование нуля.

Вот так выглядит бит синхронизации.

Единица кодируется длинным импульсом и короткой паузой, а ноль наоборот. Длительности всех импульсов и пауз между ними зависит от частотозадающих цепей микросхемы.

Сама посылка выглядит так:

Измеряя длительности импульсов(длинный импульс – 1, короткий - 0) можно декодировать сигнал.

Теперь о декодере, который построен на PIC16F886:

Приемник RR8 – RR10, на соответсвующую частоту. LED3, LED4, LED5, LED6 – индикация состояния реле. LED1 – индикация приема посылки от пульта. LED2 – запись идентификационного кода пульта. Если необходимо местное управление, то к разъему JP1 можно подключить 4 тактовые кнопки без фиксации. SG1 – звуковая сигнализация(бузер с встроеным генератором). Для большей гибкости все контакты реле выведены на разъемы, так что можно нагрузку подключать как угодно.

Прием и декодирование посылки ведется с помощью модуля ШИМ(CCP1) микроконтроллера, настроенного в режим захвата. Для большей помехозащищенности прием ведется по детектированию импульсов и по детектированию пауз между ними, таким образом в конце приема мы получаем две посылки, одну прямую, другую инверсную. Сравнив которые решаем принят сигнал верно или нет. В начале каждого захвата TMR1 работающий совместно с модулем CCP1 сбрасываем не давая ему переполнится при приеме данных. Если произойдет прерывание от TMR1, то это будет свидетельствовать о окончании передачи данных или о приеме помехи, или о потере сигнала. Код снабжен достаточно подробными коментариями, так что здесь не привожу куски кода.

Переключатель S1 – задает режим работы устройства.

S1-5 – вкл./выкл. Звуковой сигнализации.

S1-6 – запись. Добавление/удаление в память кода ISN пульта управления, (максимум 4 шт.).

S1-1, S1-2, S1-3, S1-4 – режим работы реле, с фиксацией или без фиксации(каждого канала не зависимо). В режиме записи номер ячейки памяти.

Добавление пульта в память:

S1-1, S1-2, S1-3, S1-4 – поставить в состояние выкл. S1-6 – поставить в состояние вкл., при этом загориться LED2. Переключателями S1-1, S1-2, S1-3, S1-4 – выбираем ячейку памяти в которую будем записывать. При этом LED2 количествами миганий будет указывать на номер выбраной ячейки. Нажимаем на любую кнопку пульта, короткий звуковой сигнал и свечение LED2 укажут на завершение записи. Выбираем другую ячейку и повторяем действия.

Удаление пульта:

S1-1, S1-2, S1-3, S1-4 – поставить в состояние выкл. S1-6 – поставить в состояние вкл., при этом загориться LED2. Переключателями S1-1, S1-2, S1-3, S1-4 – выбираем ячейку памяти которую необходимо очистить. При этом LED2 количествами миганий будет указывать на номер выбраной ячейки. Нажимаем на любую кнопку пульта который уже занесен в память, два коротких звуковых сигнала и свечение LED2 укажут на завершение очистки. При необходимости, выбираем другую ячейку и повторяем действия.

Ну и готовое устройство выглядит так:

Дальность действия в условиях прямой видимости сотавляет 50…70 метров.



Данное устройство предназначено для управления 4 различными нагрузками (например управление гаражными воротами, эл. освещением и прочее). Допускается одновременное нажатие кнопок в любой комбинации (для режима без фиксации команды). Приемник имеет 2 режима работы: – 1 режим без фиксации команды (перемычка на приемнике убрана) – команды выполняются только в момент удержания соответствующей кнопки (кнопок). – 2 режим с фиксацией команды (установлена перемычка на приемник) – команда выполняется после нажатия кнопки, повторное нажатие кнопки отключает команду.

Передатчик состоит из кодера на микроконтроллере, и радиомодуля для передачи данных по радиоканалу. Модуляция – ШИМ. В передатчик заложен алгоритм помехоустойчивой передачи данных, для защиты от ложных срабатываний. Потребление тока в режиме покоя составляет 0,1мкА в режиме сна, и 11мА во время передачи (от источника напряжения 3В). 0,3мкА в режиме сна, и 15мА во время передачи (от источника напряжения 6В). Для управления на небольшой дистанции достаточно одной литиевой батареи. Для более дальней связи используются 2 литиевых батареи. Плата передатчика – 2-х сторонняя. Обратная сторона используется в качестве экрана. Фольга только удалена под катушкой L2.

Особенности передатчика:

– для сверхнизкого потребления тока в режиме сна в контроллере пришлось отключить одну важную функцию (с этой функцией потребление тока составило бы 60 мкА, что не есть хорошо), поэтому в некоторых ситуациях контроллер при подключении батареи может зависнуть. Для вывода его из этого состояния нужно извлечь батарею, нажать на кнопку SB4 (для разряда конденсаторов), и снова установить батарею до успешного старта контроллера. В нормальном рабочем режиме с установленной батареей зависаний не будет (пока батарея не разрядится).

– если при подключении батареи удерживать кнопку SB1, то передатчик перейдет в режим передачи сигнала 100 % амплитудной модуляцией частотой 1кГц. Это сделано для тех кто самостоятельно будет собирать и настраивать сверхрегенеративный приемник на нужную частоту (по сигналу передатчика удобно производить данную настройку).

– если при подключении батареи удерживать кнопку SB2, то передатчик перейдет в режим постоянной передачи кодовой посылки 0101 (2 светодиода горят, 2 потушены). Этот режим удобен для тех, кто будет тестировать дальность работы устройств.

Приемник состоит из декодера на микроконтроллере, и готового приемного радиомодуля (радиомодуль не должен инвертировать сигнал передатчика). Приемник команд особенностей не имеет. К выходу микроконтроллера можно подключить мощные полевые транзисторы для управления всеразличными нагрузками или реле.

А теперь о дальности работы. При питании передатчика от источника напряжением 6В и нахождении передатчика на 7 этаже мне удавалось передавать команды на расстояние до 1км. Причем внутри дома сигнал передатчика пробивал насквозь 7 этажей (до 1 этажа), прием даже велся в металлическом лифте на пути следования с 7 до 1 этажа. При нахождении передатчика на уровне 1,5 метра от земли сигнал передавался до 300 метров при прямой видимости. В качестве антенн были использованы куски провода по 17см.

Прошивки бесплатны, и не имеют никаких ограничений. Кодер и декодер имеют индивидуальный код (могут быть перестроены на сотни миллиардов различных комбинаций). При программировании контроллеров не забываем о калибровочных константах http://pro-radio.ru/controllers/3131-2/ (у кого PICkit – могут о этом не беспокоиться, программатор сам все сделает).

Если применить готовые радиомодули приемника и передатчика, например эти , то сборка данного устройства значительно упростится.

Радиоуправление своими руками на 12 команд

Схема позволяет управлять моделями или другими устройствами и нагрузками на расстоянии .Допускается нажатие одновременно до 8 кнопок. Схема проста в изготовлении,и требует после сборки только прошивки контроллеров.Индикаторы исполнения команд – светодиоды. Разумеется, к соответствующим выводам процессора можно подключить например затворы мощных полевых или базы биполярных транзисторов через токоограничивающие резисторы.

Схема передатчика:



Приемник


Сверхрегенератор: При номиналах указанных на схеме и исправных деталях обладает 100% повторяемостью.


Его настройка заключается лишь в раздвигании витков контурной катушки и подборе емкости связи с антенной.3 й вывод контроллера дешифратора служит для контроля прохождения сигнала при настройке (программно подключенный выход внутреннего компаратора).Контролировать можно с помощью обычного УНЧ.
Дешифратор приемника – PIC16F628A , он осуществляет декодирование и исполнение принятых команд.

Система кодер - декодер может работать как по проводам так и с другими приемником и передатчиком. Каждая посылка 0 и 1 со стороны кодера «закрашена» колебаниями 5,5 кГц для лучшей помехозащищенности + передача контрольной суммы.
Питание приемника обязательно от стабилизированного источника 5 вольт (на схеме не показан, в плате предусмотрен КРЕН 5 А +диод). Питание передатчика от 3,6 вольта но не больше 5,5 вольта (на плате предусмотрен КРЕН 5А+диод).
Картина нажатых кнопок в PORTB (выводы 6 - 13) на передающей части полностью отражается на приемной части в PORTB (выводы 6 - 13) соответственно. Картина нажатых кнопок в PORTA (3>2, 4> 15,15> 16, 16> 17).

Эта схема позволяет при помощи ДУ последовательно переключать четыре объекта. Причем, число объектов может быть увеличено до девяти (достаточно отключить вывод 1 от вывода 15 D2, а вывод 15 D2 соединить с общими минусом, и использовать все выходы D2 кроме нулевого). Идея дешифрации сигнала пульта здесь в том, чтобы реагировать на некоторое время удержания кнопки пульта нажатой.

Большинство пультов при этом излучают код команды повторяя его пока кнопка нажата. Если не обращать внимание на кодовую последовательность импульсов и пауз между повторениями команд, можно охарактеризовать импульсную последовательность на выходе фотоприемника как импульсы следующие с некой средней частотой.

Если эти импульсы подать на вход многоразрядного двоичного счетчика, то спустя некоторое время, достаточно продолжительное (несколько секунд), будут изменяться уровни на старших выходах счетчика. Эти изменения так же являются импульсами, но следующими со значительно более низкой частотой. Их уже можно подать на вход исполнительной схемы.

Сигналы пульта ДУ принимаются фотоприемником F1. В отсутствие сигнала пульта на выходе фотоприемника (выв. 3) единица. Диод VD1 закрыт. Через его обратное сопротивление, а так же, сопротивления R1 и R2 конденсатор С2 заряжен до уровня логической единицы. Счетчик D1 обнулен. На входе (вывод 14) D2 ноль.

При поступлении сигнала пульта на выходе F1 образуются отрицательные импульсы. Первый же из них посредством диода VD1 разряжает С2 и на выводе 11 D1 устанавливается единица. Теперь счетчик D1 считает импульсы, поступающие на его вход "С" с фотоприемника. Спустя некоторое время появится логическая единица на его выходе, к которому подключен вход счетчика D2 (в данном случае, на выводе 1). Это приведет к переключению счетчика D2 на очередное положение.

Если нужно продолжить переключение дальше можно не опускать кнопку пульта, либо её отпустить и нажать снова. При отпускании кнопки пульта импульсы на выходе F1 прекращаются и устанавливается логическая единица. Спустя некоторое время С2 через обратное сопротивление VD1, а так же R2 и R1, зарядится до логической единицы. Счетчик D1 обнуляется, и на всех его выходах устанавливаются логические нули.

Величина постоянной времени цепи R2-C2 подобрана так, чтобы она была значительно больше паузы между повторяющимися командами, посылаемыми пультом при удержании кнопки нажатой.

Конденсатор С1 служит для подавления импульсов - помех, которые могут быть на выходе фотоприемника. Питается схема постоянным стабилизированным напряжением 5V. Увеличивать это напряжение больше 5,5V нельзя, так как это приведет к нарушениям в работе F1.

В схеме можно использовать практически любой интегральный фотоприемник с встроенным резонансным фильтром и формирователем логических импульсов, то есть, от систем ДУ современных телевизоров.

Похожие статьи